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1 Supplementary Methods

1.1 General approach

1.1.1 Model mapping procedure

This study is fundamentally a work of model comparison, and comparing structurally different models,
with parameters differing in number and biological meaning, is not a straightforward process. For a fair
comparison, it is necessary to choose:

1. What is kept fixed across models: given different choices are possible (House and Keeling, 2008;
Ajelli et al., 2010) we argue that for a fair comparison such quantities should be observable or
directly estimable and with a model-independent biological interpretation; referred to in this study
as observables, they are therefore likely to be some aggregate macro-parameters, like R0 or the
real-time growth rate;

2. How the other basic model parameters, which are likely not measured directly and whose definition
is model-specific (e.g. the transmission rates in different environments) are derived from these ob-
servables: this process is likely to unravel numerous unidentifiability issues that should be made as
clear as possible; and

3. How the models are compared in terms of their predictions, which we refer to as model outputs; like
the observables, they are aggregate quantities that typically depend in a complex fashion on the
basic model parameters.

The conclusions may fundamentally depend on such choices, so they need to be spelt out clearly and
how results depend on them should be investigated. We recognise many practical contexts are likely to
be significantly more complex than the one considered here, and parameter spaces are less likely to be
explored so thoroughly, but we still advocate that this general approach be followed, choices made explicit
and issues encountered discussed openly.

Here we assume we are observing the early phase of an outbreak of a new infection. By “early” we
formally mean during the time window that occurs after the epidemic has taken off (i.e. when the initial
phase, dominated by random events and possible stochastic extinction, is over and the initial conditions
have been forgotten) but while the global depletion of susceptibles is still negligible. We refer to this time
window as the stable exponential growth window. The observables, which are aggregate early indicators
of how the epidemic is progressing, are mathematically well-defined during this stable exponential growth
window.

We start by considering a (reasonably) complex model – an age- and household-stratified one, denoted
by AH – and we assume it to be the “truth”, i.e. a perfect representation of reality. For any arbitrary
choice of the basic model parameters for model AH, all quantities of interest are computed, including the
observables we want to keep fixed between all models in which they can be defined (in this study, R0, the
household secondary attack rate and the adults-to-children incidence ratio in each generation) and the
outputs we want to compare between models (in this study, final size, peak daily incidence and time to
incidence peak). We assume a sufficiently large population (ideally infinite), so that despite the models
being stochastic we can invoke the law of large numbers to assume zero variance and work with average
quantities only. In other words, we neglect any stochastic variability and assume a perfect deterministic
relationship between the basic model parameters and the other model quantities.

The “true” model AH is then mapped onto structurally simpler ones. The term map is used to imply
that the basic model parameters are not estimated from the observables using a statistical procedure.
Instead, they are computed deterministically by inverting the function that would give the observable in
terms of the basic model parameters (in most cases, when dealing with scalar functions, this is achieved
using the fzero routine in Matlab; in more dimensions, the fsolve routine is used). Therefore, in
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addition to lack of stochastic variation, we assume perfect knowledge of the observable, i.e. no measure-
ment error, no noise and no other forms of bias in the observation. This approach has the limitation that
some parts of the mapping procedure might in reality be hard to perform because of excessively wide
confidence intervals in any practical statistical estimation procedure, but has the benefit of making the
relationships and dependencies between all model quantities totally transparent, thus uncovering possible
non-identifiability issues, which could instead be obscured by a complex statistical technique, and high-
lighting which pieces of information can and should be used to solve such issues even when advanced
statistical tools are used.

1.1.2 Temporal details of the infectivity profile

We assume that individuals make infectious contacts at the points of a Poisson process with rate that
changes over time; such a rate is called the infectivity profile. Infectious contacts lead to an infection if and
only if, when contacted, an individual is susceptible. We assume for simplicity that the infectivity profile
has the same shape, as a function of time, for all individuals in all environments (i.e. within-household
and in the community), and that therefore the only difference occurs in a scaling factor. The normalised
infectivity profile is called the infectious contact interval distribution (Kenah et al., 2008; Kenah, 2011)
or, sometimes, the generation time distribution (Svensson, 2007).

Specifically, we choose a infectious contact interval distribution typical of influenza: a Gamma distri-
bution with mean TG = 2.85 days (sometimes referred to as the generation time) and shape parameter
α = 9, in line with Wallinga and Lipsitch (2007), Fraser (2007) and as used by Pellis et al. (2010). Note
that this choice has no impact on the mapping procedure, as explained in the next section: however, it
affects other quantities, such as the real-time growth rate r, and some model outputs like the peak inci-
dence and the time of the epidemic peak. Therefore, in order to quantify the mean number of generations
to the peak and allow simpler generalisation of results to other infections, the time to the peak is rescaled
by the generation time TG.

Although some studies highlighted the presence of detectable differences in the generation time of
individuals in different age classes in different environments (e.g. children at school versus adults in the
community; see Cauchemez et al., 2011), the choice of using a single infectious contact interval distribution
everywhere is a very convenient one, and is very commonly adopted (Ball et al., 2016; Trapman et al.,
2016). The main reason is that the next-generation matrix approach and the real-time one (see Pellis
et al., 2008, for details and Diekmann et al., 2012, p. 30-31 and 212-219, for a comparison between the
two approaches) become equivalent for models with no households and, when households are included,
are still quantitatively strongly related (Ball et al., 2016; Trapman et al., 2016).

1.1.3 Model mapping at fixed R0

Some epidemic quantities, like the real-time growth rate (r), the peak incidence or the time to the peak,
depend on the temporal details of the individuals’ infectivity profiles; therefore, they are in general difficult
to handle analytically. Some other quantities, notably the basic reproduction number R0 (see Diekmann
et al., 2012, Section 7, for the basic definition in homogeneously mixing and multitype models, and Pellis
et al., 2012, and Ball et al., 2016, for its extension to models with households) and the epidemic final size
distributions in either a small group or in the population at large, are time-integrated quantities: they
depend on the individuals’ infectivity profiles only through their total infectivity, i.e. the area under the
infectivity profile curve. For this reason, they are often more easily tractable (see Pellis et al., 2008, or
Ball et al., 2016) and available analytical results allow their efficient calculation to machine precision.

In order to make extensive model comparison feasible, we choose to base the mapping procedure only
on time-integrated quantities: specifically, R0, the household secondary attack rate and the incidence ratio
of adults versus children in each generation. Once the parameters of each model are chosen or mapped,
we use individual-based stochastic simulations to plot those outputs that depend on the temporal details
of the individuals’ infectivity profiles.
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Because of our assumption that the infectious contact interval distribution is the same for all types
in all environments, keeping fixed R0 in the model mapping procedure is quantitatively very similar to
keeping fixed the real-time growth rate r, which is an even more intuitive and readily available quantity
early on in an epidemic (Trapman et al., 2016). The discrepancies between keeping fixed R0 and r are
due to two factors:

i) infectives make repeated infectious contacts towards each single susceptible household member, and
the infection is transmitted at the time of the first contact (if any at all), thus occurring on average
after a time spell shorter than TG in general (see Pellis et al., 2015, for a careful explanation of this
in the context of networks);

ii) generations of infections in households overlap (Ball et al., 2016).

Because these two factors need to be taken into account to calculate r, no analytical formula to express r
in terms of more basic parameters is available in the presence of households (Ball et al., 2016, Appendix
G), and model comparison based on r is therefore computationally intensive. Although machine-precision
numerical methods for computing r do exist for households models with constant rates of flow between
compartments and constant infection rates in each of them (e.g. Pellis et al., 2010), this is not the
case for time-since-infection models like the one considered here. Therefore, Fraser (2007) developed an
analytical technique to compute r approximately in households models, later extended in Pellis et al.
(2010). However, this approximate method ignores exactly the two points highlighted above, i.e. those
intricacies that result from the interaction of the household structure with the temporal details of the
infectivity profile. Matching the same analytically tractable approximation of r is therefore equivalent
to matching the same R0 in the mapping procedure. The contribution of the two factors above is small
for peaked unimodal infectious contact interval distributions (generations tend not to overlap) and low
within-household infection rates (repeated infectious attempts between the same infective and susceptible
are rare; see Pellis et al., 2010, and Ball et al., 2016). Therefore, the discrepancy between matching the
same R0 and the same r widens for increasing within-household infectivity. In order to quantify such
a discrepancy and the implications it has for the mapping procedure, in the Supplementary Methods,
Section 1.2.9, we discuss how to compute r using Monte Carlo simulations of within-household epidemics
and in the Supplementary Discussion, Section 2.3.2, we use this method to perform the model comparison
at fixed r. Only the baseline scenario discussed in the main text is considered, due to the computational
cost.

1.1.4 Contact matrices and mixing

The contact patterns between adults and children, both in the household (h) and in the community (g,
for “global”) is here parametrised in terms of next-generation matrices (NGMs). The general idea of how
the NGM is constructed from more fundamental parameters is described in this section, with non-indexed
symbols or symbols with generic indices, to stress that the approach is not connected to age classes only
or the specific topic of this study. In the next sections, the NGMs for the household and the global
infectious contacts are presented with the suitably indexed symbols and the environment-specific details
(e.g. accommodating for finite size in the household, etc.).

We found no fully satisfying 1-to-1 parametrisation of the NGM in terms of more fundamental quan-
tities in the literature, i.e. one for which any NGM can be derived from suitably observed quantities, but
without redundancy (see Glass et al., 2011, for an exploration of different parametrisations). Therefore
we derived a new parametrisation which is good enough for our purposes, but has the serious limitation
of not being easily generalisable to more than two groups.

Denote by i = 1 or 2 the group index (we have in mind group 2 referring to children) and by ci the
contact rates, i.e. the total number of contacts a single individual in group i has per unit of time (here, a
day). Denote by fij the fraction of contacts that a single type-j individual makes with type-i individuals
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(0 ≤ fij ≤ 1), so that the matrix of contact rates has the following structure:

C = (cij) =

(
f11c1 f12c2

f21c1 f22c2

)
=

(
f11c1 (1− f22)c2

(1− f11)c1 f22c2

)
.

Denoting by Ni the number of type-i individuals and assuming that the contacts are undirected, we
impose the balancing condition

(1− f11)c1N1 = (1− f22)c2N2

stating that the total number of contacts from 1 to 2 equals the total number of contacts from 2 to 1.
Note that this assumption is not true in general (there are forms of one-way transmissions, which can be
thought of as due to particular contacts, e.g. through fomites, blood transfusions, etc.). However, it is a
customary assumption for airborne infections in which bidirectional contacts are thought to be responsible
for most transmission events and one-way contacts are difficult to define and therefore measure. Using
the balancing condition to eliminate f11 and setting f22 = θ, we obtained the balanced contact matrix

C∗ =
(
c∗ij
)

=

c1 − (1− θ)c2
N2

N1
(1− θ)c2

(1− θ)c2
N2

N1
θc2

 .

Note that θ represents a measure of the assortativity of type-2 individuals, defined as the fraction of the
contacts of a type-2 individual that occurs with other type-2 individuals. This definition of assortativity
– where θ = 1 gives fully assortative mixing, θ = 0 fully anti-assortative mixing and random mixing is
obtain for θ coinciding with the proportion of cases of type 2 in the population – is somewhat not standard
in the literature, where usually θ = 1 gives full assortativity and θ = 0 random mixing. Furthermore, note
that not all values of θ between 0 and 1 necessarily lead to acceptable contact matrices: depending on
the other parameter, certain values of θ might lead to a violation of the natural requirement that c∗11 ≥ 0.

1.1.5 Transmission: next-generation matrices

Denote now by pij the probability of transmission across a contact from a type-j to a type-i individual.
Choosing group 1 as the baseline, we assume that p12 = p11φ, p21 = ψp11 and p22 = ψp11φ, where ψ
and φ are, respectively, the relative susceptibility and infectivity of a type-2 versus a type-1 individual.
Finally, because the contact rates ci are defined per unit of time while the elements of a NGM give the
total number of infectious contacts during the entire infectious period, we need to multiply all elements
of C or C∗ by a constant ξ = Tζ, where T is the duration between infection and recovery and ζ denotes
the fraction of all contacts occurring during the infectious period that are infectious contacts, i.e. that
will result in an infection if the contacted individual is susceptible at that time.

One can think, as shown in Supplementary Figure 1, that ζ is the ratio of the area under the infectivity
profile over the area of a rectangle at height given by the contact rate c and width given by T . The
infectivity profile cannot cross the horizontal line a height c because we assume constant contact rate and
transmission occurring with a certain probability during a contact, so that the infectious contact rate is
never larger than the contact rate. Note however that T is not uniquely determined: one can double T
(i.e. can consider T ′ in Supplementary Figure 1) assuming that the infectivity is null in the second half
of this longer infectious period, but this means that ζ is halved, resulting in the same ξ.

Here we have assumed that individuals of all types have the same infectious contact interval dis-
tribution in all environments, so that the infectivity profiles of different types in all environments are
proportional to one another and ξ is the same for all types. As mentioned before, this is not necessarily
the case (for example, Cauchemez et al., 2011, detected a shorter generation time of children in schools
compared to adults in the community), but such level of detail is not considered in this study for a matter
of convenience.
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Overall, by gathering c2 and the common factors ξ and p11, we obtain a NGM structure of the form

K = (kij) = p11ξc2


c1
c2
− (1− θ)N2

N1
(1− θ)φ

ψ(1− θ)N2

N1
ψθφ

 = β

γ − (1− θ)N2

N1
(1− θ)φ

ψ(1− θ)N2

N1
ψθφ

 ,

where we have set γ = c1/c2 and β = p11ξc2. Note that the factors in β cannot be separately quantified
unless an arbitrary definition of contact is chosen (e.g. a common one is a two-way conversation, see
Mossong et al., 2008).

Typically, the next generation matrix cannot be fully specified from epidemic data alone (Glass et al.,
2011). The parametrisation above reduces to a minimum the extra information used, but still requires
knowledge of γ and θ in all environments, which either needs to be assumed or estimated from contact
studies (see Supplementary Methods, Section 1.6.3).

1.2 Age- and household-stratified model

1.2.1 Population structure

The age- and household-stratified (AH) model assumes a population partitioned in two age classes: adults
(a) and children (c). We denote by hna,nc the probability that a randomly selected household has compo-
sition (na, nc), i.e. consists of na adults and nc children. Although we also consider other populations (see
Supplementary Methods, Section 1.6.2), our baseline scenario focuses on Great Britain. The data, based
on the 2001 UK census (Office for National Statistics, 2001), is reported in the Supplementary Methods,
Section 1.6.1, and in particular the distribution {hna,nc} for Great Britain obtained from these data is

reported in Supplementary Table 1. From the distribution {hna,nc} we derived the distributions
{
πa
na,nc

}
and

{
πc
na,nc

}
of the composition of the household of a randomly selected adult and child, respectively,

where

πana,nc : =
na hna,nc∑

n′
a,n

′
c

n′a hn′
a,n

′
c

and πcna,nc : =
nc hna,nc∑

n′
a,n

′
c

n′c hn′
a,n

′
c

(1)

(see Supplementary Table 3).
We denote the total number of adults and children by Na and Nc respectively, the total population

by N = Na +Nc and the fractions of adults and children by Fa = Na/N and Fc = Nc/N .

1.2.2 Global infectivity

With the parametrisation described in Section 1.1.5, the next generation matrix (NGM) describing trans-
mission in the community is given by

Kg =

(
kgaa kgac

kgca kgcc

)
= βg

γg − (1− θg)
Nc

Na
(1− θg)φ

ψ(1− θg)
Nc

Na
ψθgφ

 ,

where kgij gives the average number of cases in age-class i an individual in age-class j generates through
global infectious contacts only, during the entire infectious period. During the early phase of the epidemic,
i.e. when the depletion of susceptible in the community is negligible, all these contacts lead to new
infections. Here, γg represents the ratio of the numbers ca and cc of daily contacts an adult and a child
have outside the household, ψ and φ are, respectively, the relative susceptibility and infectivity of children
versus adults, and θg is the (global) assortativity of children, defined as the fraction of contacts that a child
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makes with other children in the community. As pointed out before, this definition of the assortativity is
somewhat non-standard, as θg = 1 and θg = 0 give, respectively, fully assortative and fully antiassortative
mixing, and

θg =
ccN2

caN1 + ccN2
=

N2

γgN1 +N2

gives random mixing. (On the contrary, in the literature, assortativity is often parametrised such that
θg = 0 leads to random mixing.) The multiplicative constant βg is then chosen to match the desired value
of R0 (see details about the computation of R0 for model AH in the Supplementary Methods, Section
1.2.4). In the baseline scenario, we use γg = 1 and global random mixing, i.e. θg = Nc/(Na +Nc) = Fc.

We denote by Rg0 the dominant eigenvalue of Kg, which is always smaller than R0 and gives an intuitive
measure of the amount of transmission occurring in the community. The remaining part, R0 −Rg0, is the
component attributable to the within-household transmission, so we define

Fh : =
R0 −Rg
R0

as the fraction of total transmission occurring in the household, which is explored numerically under
different assumptions in Sections 2.1.1 and 2.2.1 of the Supplementary Discussion.

1.2.3 Within-household infectivity

The NGM within a household with na adults and nc children is

Kh =

(
khaa khac

khca khcc

)
= βh

γh − (1− θh)
nc
na

(1− θh)φ

ψ(1− θh)
nc
na

ψθhφ


(see Supplementary Methods, Section 1.1.5, for derivation), where khij gives the average number of infec-
tious contacts an individual in age-class j makes towards individual in age-class i (if there were infinitely
many of them in the household, then khij would be the number of new cases of age-class i generated early
on in the within-household epidemic). Similarly to the global case, γh represents the ratio of the num-
bers of daily contacts an adult and a child have within the household and θh is the (within-household)
assortativity of children, defined as the fraction of all contacts a child makes that are with other children
in a household of composition (na, nc). Note that the concept of a single within-household assortativity
parameter independent of the household composition is not well defined, because the requirement that
khaa ≥ 0 might be satisfied in a household of a certain composition, but not of other ones. In order to
avoid manual specification of a value of θh for each household composition, we assumed random mixing
within the household and set θh = (nc − 1)/(n− 1), where n = na + nc is the household size (a child has
nc − 1 other children to contact, out of the n − 1 other household members). We assume the biological
parameters ψ and φ do not change between different environments. The multiplicative constant βh is
then derived from paa by inverting the construction of paa described below.

The within-household average numbers of infectious contacts between two specific individuals in a
household with composition (na, nc) are given by the matrix

Λhna,nc =

(
λhaa λhac

λhca λhcc

)
=


khaa

na − 1

khac
na

khca
nc

khcc
nc − 1

 (2)

(provided the above quantities are defined: when they are not defined, e.g. in the case of λhcc when there
is only one child in the household, they are also not necessary).
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The amount of within-household transmission is quantified by βh, but we re-parametrised the model in
terms of paa, a quantity more common in the literature and referred to as the susceptible-exposure attack-
rate in Simpson (1952), secondary attack rate in Cauchemez et al. (2004), or as one minus the susceptible-
infectious escaping probability in Fraser (2007). We define paa as the probability of a randomly selected
susceptible being infected directly by a single initial household case, in a randomly selected household with
at least two individuals, when adults and children have the same susceptibility and infectivity (ψ = φ = 1).
In other words, we first compute pn = 1− exp(−βh/(n− 1)) for each household size n, and then average
pn over the size distribution of a randomly selected household, conditional on the size being larger than

1. We denote this distribution as
{
h̃n

}
, where

h̃n : =


0 for n = 1
hn∑

n>1
hn

for n > 1

(see Supplementary Tables 2, 5 and 7). Different other similar choices would have been possible. Given
that paa and βh are monotonically related, with paa = 0 when βh = 0 and paa → 1 as βh → ∞ (see
Supplementary Figure 2), it is always possible to find the value of βh required to achieve the desired value
of paa.

Other measures, such as the household secondary attack rate (SAR, stratified either by household
size or composition, or averaged over a suitable household distribution), or the fraction Fh of total
transmission occurring within the household compared to outside, could be more intuitive. However, they
are too aggregate, as they depend on other variables we want to explore independently (such as ψ and
φ), or, as in the case of the SAR, even on the ratio of adults versus children during the stable exponential
growth window, which in turn is a complex model output affected by all other variable choices. In the
Supplementary Discussion, Sections 2.1.1 and 2.2.1, we explore the numerical values of these quantities for
different scenarios. Eventually, in the main text we provide a rule of thumb that can guide model design
directly in terms of the observed SAR, without the need to compute paa explicitly. This is somewhat
surprising, given the amount of complexity captured in the SAR.

1.2.4 Computation of R0

The computation of the basic reproduction number R0 for model AH is based on the extension of the
technique developed in Pellis et al. (2012) to a model with two types.

For each household composition (na, nc), we compute the probability of each possible epidemic chain
using a 2-type Reed-Frost model, with 1-to-1 transmission probabilities given by the elements of Λhna,nc
in Supplementary Equation 2, starting either with a single adult or a single child. For either age class p
(p = a or c) of the primary case, we computed the average number µpt,i,(na,nc) of cases of age class t (t = a

or c) in each generation i, i = 0, 1, . . . , imax, where the initial infectives are in generation 0 and imax the
maximum generation index (which is at most na + nc − 1, but can be smaller for if there are more initial
infectives).

Because time integrated quantities, like R0 or the final size, depend only on the distribution of the
total infectivity, and not on the particular shape of the infectivity profile, the time-since-infection model
used here is equivalent to a standard stochastic SIR model (Andersson and Britton, 2000, Section 2) with
constant duration of infection period or to a simple Reed-Frost model (Andersson and Britton, 2000,
Section 1.2). Therefore, following Equation A.1 of Pellis et al. (2012) (with P replaced here by Q), we
define Q(ba,bc) ((ma,mc) , (sa, sc)) to be the probability of ma adults and mc children out of sa adults and
sc children escaping infection from ba and bc infectious adults and children, which we compute as:

P(ba,bc) ((ma,mc) , (sa, sc)) =

(
sa
ma

)
qmaa (1− qa)sa−ma

(
sc
mc

)
qmcc (1− qc)sc−mc .
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The probability qa that an adult escapes infection independently from the infectious adults and children
is qa = qbaaaq

bc
ac, where the 1-to-1 escaping probabilities can be derived from Supplementary Equation 2 as

qaa = e−λ
h
aa and qac = e−λ

h
ac . Similarly, qc = qbacaq

bc
cc with qca = e−λ

h
ca and qcc = e−λ

h
cc .

Denote by Yt,i,(ba,bc),(sa,sc) the number of cases of type t (t = a or c) in generation i of an epidemic
in a household with sa and sc susceptible adults and children and ba and bc initial infectives adults
and children, and let µt,i,(ba,bc),(sa,sc) = E

[
Yt,i,(ba,bc),(sa,sc)

]
be its mean. Then, conditioning on the first

generation, for t = a or c we obtain the recursive relation:

µt,i,(ba,bc),(sa,sc) = E
[
Yt,i,(ba,bc),(sa,sc)

]
= E

[
E
[
Yt,i,(ba,bc),(sa,sc)|Ya,1,(ba,bc),(sa,sc), Yc,1,(ba,bc),(sa,sc)

]]
=

sa∑
ja=0

sc∑
jc=0

(
E
[
Yt,i,(ba,bc),(sa,sc)|Ya,1,(ba,bc),(sa,sc), Yc,1,(ba,bc),(sa,sc)

]
P
(
Ya,1,(ba,bc),(sa,sc) = ja, Yc,1,(ba,bc),(sa,sc) = jc

) )
=

sa∑
ja=0

sc∑
jc=0

P(ba,bc) ((sa − ja, sc − jc) , (sa, sc))µt,i−1,(ja,jc),(sa−ja,sc−jc),

where sa, sc, ba and bc are all greater than or equal to 0 (households with no adults or no children
are allowed), the number of generations ranges from 1 to imax = sa + sc (the longest possible chain
of infections is when, after the initial infectives in generation 0, there is exactly one infective in each
generation irrespective of their type), and: µt,0,(ba,bc),(sa,sc) = bt, for t = a or c and ba, bc, sa, sc ≥ 0;
µt,i,(ba,bc),(0,0) = 0, for t = a or c, 1 ≤ i ≤ imax and ba, bc ≥ 0; and µt,i,(0,0),(sa,sc) = 0, for t = a or c,
0 ≤ i ≤ imax and sa, sc ≥ 0. Note that other terms might be null, for example when sa−ja+sc−jc < i−1,
as there can be no infectives in generation i−1 if there are not enough susceptibles to have at least one case
in each generation till then. However, explicitly accounting for this in the sum indices is cumbersome, so
we just let the sums include such null terms. Because we are only interested in within-household epidemics
started with a single initial case, we set µat,i,(na,nc) = µt,i,(1,0),(na−1,nc) and µct,i,(na,nc) = µt,i,(0,1),(na,nc−1).

Once we have µpt,i,(na,nc), as done in Pellis et al. (2012) for the single-type model, we then obtain the

expected number of cases µpt,i of each age class t in each generation i of the average household epidemic
started by a randomly selected primary case in age class p as

µpt,i =
∑
na,nc

µpt,i,(na,nc)π
p
na,nc , i = 0, 1, ..., imax,

i.e. by averaging µpt,i,(na,nc), for either p = a or c, over the composition distributions πpna,nc of the household

of a randomly selected individual of age class p (see Supplementary Equation 1 in Supplementary Methods,
Section 1.2.1).

In order to compute R0, individuals need to be distinguished in types according to their potential
to infect, and this depends on i) their age class, ii) the age class of the primary case of the household
epidemic and iii) the generation they belong to. We denote by xpn,t,i the average number of individuals
in generation n of the whole epidemic, which are of age class t (t = a or c) and belong to generation i
(i = 0, 1, . . . , imax) of a within-household epidemic started by an initial infective of age class p (p = a or
c). Given that, for all i = 0, 1, . . . , imax and t, t′, p ∈ {a, c},

xpn,t,i =
∑

t′
µpt,ix

p
n−1,t′,0,

we only need to track the dynamics of xpn,t,0, for all n > 0, t, p ∈ {a, c}. Furthermore, because xpn,t,0 = 0
when t 6= p (there are no children infected in generation 0 of a household epidemic started by a single
adult, and vice versa), we simply need to track xpn,p,0, n > 0, p = a or c.
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In the spirit of Pellis et al. (2012), we consider the (column) vector

xn,0 : =
(
xan,a,0, x

a
n−1,a,0, . . . , x

a
n−imax,a,0, x

c
n,c,0, x

c
n−1,c,0, . . . , x

c
n−imax,c,0

)>
(3)

(throughout, > denotes matrix transposition) and argue that the dynamics of xn,0 are described by the
system

xn,0 = Mxn−1,0,

where the 2imax × 2imax block matrix (empty spaces denote 0 entries)

M =



αa,a0 αa,a1 · · · · · · αa,aimax
αa,c0 αa,c1 · · · · · · αa,cimax

1 0

1
...

. . .
...

1 0
αc,a0 αc,a1 · · · · · · αc,aimax

αc,c0 αc,c1 · · · · · · αc,cimax

1 0

1
...

. . .
...

1 0


(note that the unit elements occupy the subdiagonal, not the main diagonal). The coefficients of M are
defined by

αp,p
′

i : = kgp,aµ
p′

a,i + kgp,cµ
p′

c,i

and express the fact that an initial household case of type p′ in generation n− i−1 contributes to primary

household cases in generation n by producing µp
′

a,i and µp
′

c,i adults and children in generation n− 1 (i.e. i
generations later), which in turn produce, respectively, kgp,a and kgp,c new primary cases of type p in
generation n (the infection can only enter a new household via a global infection).

As shown in a slightly different context in Pellis et al. (2012), R0 can be obtained as the dominant
eigenvalue ρ(M) of M . (Throughout, we denote by ρ(J) the dominant eigenvalue, or spectral radius, of
a square matrix J .) Because the coefficients depend on βg via Kg, we can think of R0 being a function
of βg. Given that R0 (βg) is strictly monotonically increasing, it can be inverted. In addition, R0(0) = 0
(the infection does not exit the households of the initial cases if there is no global transmission) and
R0 (βg)→∞ as βg →∞, so for each choice of parameters paa, ψ, φ and θg, we can compute the value of
βg required to achieve a desired value of R0.

1.2.5 Incidence ratio of adults versus children in each generation

We denote by vAH = (va, vc)
> the vector whose components represent the proportions of adults and

children in each generation during the stable exponential growth window, i.e. after they have converged
to a stable value, but before experiencing global depletion of susceptibles. To obtain vAH we proceed as
follows. In each generation, the components of xn,0, as defined in Supplementary Equation 3, give the
average number of household primary cases of each type spread across different generations. They can be
used to obtain the average number of cases of either type t in generation n but belonging to each possible
household generation i (i = 0, 1, . . . , imax) from the relationship

xpn,t,i = µpt,ix
p
n−1,p,0.

Summing over p and i we obtain the average number of individuals of age class t = a or c in generation
n

xn,t =

imax∑
i=0

(
xan,t,i + xcn,t,i

)
. (4)
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The total number of cases in generation n is xn = xn,a + xn,c. During the stable exponential growth
window, all these discrete-generation quantities grow geometrically by the same per-generation factor R0

so that, independently of n, xn,0 = w, where

w : = (w0,a, w−1,a, . . . , w−imax,a, w0,c, w−1,c, . . . , w−imax,c)
>

is the dominant eigenvector of M , i.e. the eigenvector of M relative to the dominant eigenvalue R0. Using
w in Supplementary Equation 4, we obtain

wt =

imax∑
i=0

(
µat,iw−i,a + µct,iw−i,c

)
and, renormalizing, the components va = wa/(wa + wc) and vc = wc/(wa + wc) of vAH. We also denote
by vAH

h the vector obtained by renormalizing the components of Kgv
AH so that they sum to 1. This repre-

sents the distribution of age classes of any new household primary case in the stable exponential growing
window, because individuals make global infections independently of the within-household generation
they belong to and the age of their household’s primary case.

1.2.6 Household secondary attack rate

The household secondary attack rate (SAR) is a measure of how much transmission occurs in households,
and it is readily measurable from data collected in household studies. Although study designs vary,
in many cases households are recruited when at least one of their members develops symptoms. The
household is then followed for a limited amount of time (usually one or two weeks in the case of influenza,
see for example Cauchemez et al., 2004, 2009 or House et al., 2012), while the epidemic is still raging
in the general population. It is often very difficult to discriminate whether household cases other than
the first have been infected within the household or from the community, so it is often assumed that all
observed cases have been infected by other household members, unless time proximity of the first few
cases makes direct transmission implausible.

Following Cauchemez et al. (2009) we define SAR as

SAR : =
# infecteds

# contacts
,

where “# contacts” is the number of all initial susceptibles in all households recruited in the study, i.e. the
sum of all household members, excluding each single primary case, of all recruited households, and “#
infecteds” is the number of those initial susceptibles that acquire infection within the follow-up period.

Consider a household study conducted in an epidemic spreading according to model AH (the “truth”),
and further assume that:

1. the study takes place in the early phase of the epidemic (in the stable exponential growth window) so
that reintroductions of the infection in previously infected households are rare and can be neglected;
and

2. households are followed for long enough to fully observe the first within-household epidemic, started
by the single primary case. (After the stable exponential growth window, susceptibles that escaped
the first household epidemic can still be infected from the community and infect each other.)

Under these assumptions, it makes sense to define the household secondary attack rate in model AH as

SARAH : =
µAH − 1

χv − 1
,
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where χv and µAH are, respectively, the average size of a household infected during the stable exponential
growth window in model AH (note the explicit dependence, indicated by the superscript v, on vAH

h , which
is explained in detail below) and the average size of an epidemic in such a household.

The rest of this section is devoted to clarifying the reasons for this definition and the precise assump-
tions we are making.

Denote by L the set of all households recruited in the study and let L = |L| be the total number of
households (hereafter, | · | denotes denote the number of elements of · ). Analogously, indicate by Ln,
Lna,nc and Lpna,nc the sets of all recruited households, respectively, of size n, with composition (na, nc),
and with composition (na, nc) and primary case of age class p, where p = a or c (note that available data
might not contain this last piece of information). Let Ln = |Ln|, Lna,nc = |Lna,nc | and Lpna,nc = |Lpna,nc |.
Furthermore, define by

π̂pna,nc : =
Lpna,nc
L

the observed distribution of households with composition (na, nc) and with a primary case of age class p
recruited in the study. Finally, let nmax be the maximum household size and let nl and Z l be, respectively,
the size of household l (l = 1, 2, . . . , L) and the size of the observed epidemic in it, including the primary
case. Then the observed SAR in the household study is

SAR =

∑
l∈L

(
Z l − 1

)
∑
l∈L

(nl − 1)
=

(
nmax∑
n=1

∑
na+nc=n

∑
l∈Lna,nc

Z l

)
− L(

nmax∑
n=1

∑
l∈Ln

nl

)
− L

=

nmax∑
n=1

∑
na+nc=n

( ∑
l∈Lana,nc

Z l +
∑

l∈Lcna,nc
Z l

)
− L

nmax∑
n=1

nLn − L

=

nmax∑
n=1

∑
na+nc=n

(
Lana,nc µ̂

a
na,nc + Lcna,nc µ̂

c
na,nc

)
− L

nmax∑
n=1

nLn − L
,

where µ̂pna,nc is the observed average size of an epidemic started by a primary case of age class p (p = a
or c) in a household of composition (na, nc), which includes the initial case. Dividing both the numerator
and the denominator by the total number L of households, we obtain

SAR =

nmax∑
n=1

∑
na+nc=n

(
µ̂ana,nc π̂

a
na,nc + µ̂cna,nc π̂

c
na,nc

)
− 1

nmax∑
n=1

nπ̂n − 1

=
µ̂− 1

χ̂− 1
,

where χ̂ and µ̂ are, respectively, the average household size and the average household epidemic size
(including the primary case) observed in the study.

In a real household study, the recruitment of households is subject to many constraints, but it ideally
monitors a representative proportion of the population of infected households. Assume this ideal condition
is met and assume, for the time being, that households of size 1 are included in the survey. Then, if
model AH were accurately describing how the infection spreads in the population at large, the following
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approximations would hold:

π̂pna,nc ≈ π
p
na,ncv

p
h p = a or c (5)

π̂n ≈ πvn : =
∑

na+nc=n

(
πana,ncv

a
h + πcna,ncv

c
h

)
(6)

µ̂pna,nc ≈ µ
p
na,nc , (7)

where vah and vch are the components of the vector vAH
h giving the proportions of primary cases of each

age class in the stable exponential growth window and

µpna,nc = µpna,nc

(
Λhna,nc

)
is the average size of an epidemic started by an individual of age class p in a household of composition
(na, nc). This depends on the within-household infection rates contained in the matrix Λhna,nc and can be
computed either from the average chains of infectives in each generation introduced in the Supplementary
Methods, Section 1.2.4, as

µpna,nc =

imax∑
i=0

µpa,i,(na,nc) + µpc,i,(na,nc)

or by averaging the stratified final size distribution for a multitype model in a single (small) population
that can be calculated, for example, using the technique described in Addy et al. (1991) in the special case
of no infection from outside the household. In general, however, households of size 1 are not recruited in a
household study, because they are not useful to estimate the within-household transmission parameters.
Therefore, in general, the approximations to use should be π̂pna,nc ≈ π̃

p
na,nc and π̂n ≈ π̃n, where

π̃pna,nc : =


0 when na + nc = 1

πpna,ncv
p
h

Cv
otherwise

and π̃n : =


0 when n = 1

πvn
Cv

when n > 1

are the same distributions used before, but conditional on n being larger than 1. The normalising constant
Cv is defined as

Cv : =

nmax∑
n=2

∑
na+nc=n

(
πana,ncv

a
h + πcna,ncv

c
h

)
and depends on the elements of the vector vAH

h . (This has to be the case: for example, in the extreme case
where global infections hit only adults and adults only live in households of size 1, no household would be
recruited in the study and Cv would in fact be 0.) The observed SAR, defined as (µ̂− 1)/(χ̂− 1) should
now be approximated by

SAR =

nmax∑
n=2

∑
na+nc=n

(
µ̂ana,nc π̂

a
na,nc + µ̂cna,nc π̂

c
na,nc

)
− 1

nmax∑
n=1

nπ̂n − 1

(8)

≈

nmax∑
n=2

∑
na+nc=n

(
µana,nc π̃

a
na,nc + µcna,nc π̃

c
na,nc

)
− 1

nmax∑
n=1

nπ̃n − 1

. (9)

Acting on both the numerator and the denominator, we can multiply both by Cv and add and subtract
(1− Cv) to obtain

SAR ≈

nmax∑
n=2

∑
na+nc=n

(
µana,ncπ

a
na,ncv

a
h + µcna,ncπ

c
na,ncv

c
h

)
− Cv − (1− Cv) + (1− Cv)

nmax∑
n=1

nπvn − Cv − (1− Cv) + (1− Cv)
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and, noting that

1− Cv = πv1 =
∑

na+nc=1

(
πana,ncv

a
h + πcna,ncv

c
h

)
=

∑
na+nc=1

(
µana,ncπ

a
na,ncv

a
h + µcna,ncπ

c
na,ncv

c
h

)
because µana,nc = µcna,nc = 1 in households of size 1, we can merge the last terms in the first sums of both
the numerator and the denominator, obtaining

SAR =
µ̂− 1

χ̂− 1
≈

nmax∑
n=1

∑
na+nc=n

(
µana,ncπ

a
na,ncv

a
h + µcna,ncπ

c
na,ncv

c
h

)
− 1

nmax∑
n=1

nπvn − 1

=
µAH − 1

χv − 1
= SARAH.

1.2.7 Final size

The average final size can be computed analytically in the asymptotic limit of an infinite number of
households. The methodology is carefully described in Ball et al. (2011). Although they only apply it in
the case of a constant recovery rate (i.e. exponentially distributed infectious periods), they reference the
work of Addy et al. (1991) for the computation of final size distribution of a within-household epidemic,
which is more general and can be applied to the model used here. We briefly report it below, restricting
it to the present context, i.e. with two classes and a non-random total infectivity (because the shape
of the infectivity profile does not matter for the final size, our time-since-infection model is equivalent
to a standard stochastic SIR model where the infectious period has constant duration; see comment in
Supplementary Methods, Section 1.2.4).

First, we compute the final size distribution of a within-household epidemic allowing individuals to be
infected from outside the household. We denote by Pna,nc

(
(ua, uc)|Λhna,nc , (qa, qc)

)
the probability that

ua adults and uc children will have eventually experienced infection in a household composed of na adults
and nc children, who are all initially susceptible, when within-household transmission rates are given by
the elements of Λhna,nc in Supplementary Equation 2 and each adult escapes a constant infection pressure
from outside the household, independently of each other, with probability qa and each child escapes a
constant infectious pressure from outside, independently of each other and of each adult, with probability
qc. The probabilities Pna,nc

(
(ua, uc)|Λhna,nc , (qa, qc)

)
for ua = 0, 1, . . . , na and uc = 0, 1, . . . , nc can be

obtained numerically by solving the system (Addy et al., 1991)

`a∑
ua=0

`c∑
uc=0

(
na−ua
`a−ua

)(
nc−uc
`c−uc

)
Pna,nc

(
(ua, uc)|Λhna,nc , (qa, qc)

)
qna−`aa qnc−`cc (Ma(`a, `c))

ua (Mc(`a, `c))
uc

=

(
na
`a

)(
nc
`c

)
, (10)

for 0 ≤ `a ≤ na, 0 ≤ `c ≤ nc, where

Ma(`a, `c) = exp
[
−
(

(na − `a)λhaa + (nc − `c)λhca
)]

and
Mc(`a, `c) = exp

[
−
(

(nc − `c)λhac + (nc − `c)λhcc
)]

(these function differ from what appears in Ball et al., 2011, because they are the moment-generating
functions of the random variable that is here a constant, rather than an exponential).

Denote by za and zc, respectively, the proportion of the population of adults and the proportion of
the population of children that are ultimately infected (0 ≤ za ≤ 1, 0 ≤ zc ≤ 1). Then the infection
pressures coming from outside the household a single adult and a single child have to withstand to escape
infection altogether are due to the cumulative infectivity of all adults and children infected throughout
the epidemic, and in a finite population of size N are approximately given by

qa = exp

[
−
(
Nza

kgaa
Na

+Nzc
kgac
Nc

)]
= exp

[
−
(
za
kgaa
Fa

+ zc
kgac
Fc

)]
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and

qc = exp

[
−
(
za
kgca
Fa

+ zc
kgcc
Fc

)]
,

respectively. As the number of households, and hence N , tend to ∞, such escaping probabilities become
exact and distinct individuals escape infection independently.

Finally, za and zc are found as the implicit solutions of the system

za =
∑

(na,nc)

πana,nc
µa,(na,nc)

(
Λhna,nc |qa(za, zc), qc(za, zc)

)
na

zc =
∑

(na,nc)

πcna,nc
µc,(na,nc)

(
Λhna,nc |qa(za, zc), qc(za, zc)

)
nc

,

where the sums are over all possible household compositions and, for either type t = a or c, πtna,nc is
the probability that the household of a randomly selected individual of type t given in Supplementary
Equation 1 and µt,(na,nc) gives the average number of individuals of type t infected in an epidemic within
a household with na adults and nc children, who are all initially susceptible and escape infection indepen-
dently from outside with probabilities qa and qc (of which the explicit dependence on za and zc themselves
is highlighted), which can be computed after solving the system in Supplementary Equation 10. Note that
the system for the final size can be read as a balancing condition, where the left-hand side represents the
probability that a randomly chosen initial susceptible of type t is ultimately infected and the right-hand
side the proportion of individuals of type t infected in an epidemic within the household of a randomly
selected individual of type t, obtained conditioning on the household composition.

1.2.8 Peak incidence and time to the peak

The peak daily incidence and the time to peak incidence are computed by averaging the result of 100
individual-based stochastic simulations in a synthetic population of 100 000 individuals with household
composition structure relative to the population under study (in our baseline scenario, Great Britain –
see Supplementary Methods, Section 1.6.1 and in Supplementary Tables 1, 2 and 3; for Sierra Leone and
South Africa, see Supplementary Methods, Section 1.6.2, and Supplementary Tables 4-7).

Each epidemic starts with n0 = 50 initial cases, to minimise the chance of stochastic extinction and the
impact of random delays before the epidemics becomes established (despite this watchfulness, stochastic
noise is still visible, in particular in the time to the peak – see Figure 1c in the main text). Furthermore,
all initial cases are chosen as primary cases in a different household, and the number of adults and children
among them are given by vAH

h n0 (rounded to the nearest integer), to start the epidemic as close as possible
to the stable proportions of cases during the early exponential growth window and limit the impact of
initial conditions on the time to reach peak incidence.

Details about the simulation are reported in the Supplementary Methods, Section 1.5.

1.2.9 Monte-Carlo computation of the real-time growth rate

For maximal computational efficiency, the mapping procedure is performed only through time-integrated
quantities that do not depend on the particular shape of the infectivity profile and for which analytical
results are available. However, we test the robustness of our conclusions by performing the model com-
parison at fixed real-time growth rate r. Due to the computational cost, this is done only in the baseline
scenario. Results are presented in Supplementary Figure 18 and in the Supplementary Discussion, Section
2.3.2.

The computation of r for households models can be done to machine precision for Markovian models
(see Pellis et al., 2010), including those involving Erlang-distributed infectious periods or phase-type
distributions (i.e. as long as we have flows at constant rates between compartments and constant infectivity
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in each of them), but not for time-since-infection models. For this reason, we describe here how to compute
r by relying on Monte-Carlo simulations of within-household epidemics run using the Sellke construction
(Andersson and Britton, 2000, Section 2.2).

For this purpose we extend the method from Appendix G of Ball et al. (2016) to a model with 2-
types, t = a or c. The key ingredients to compute are the average time-varying infection rates Btt′(τ) at
which any infective in the household of a randomly selected primary case of type t′ infects, through global
contacts only, new susceptible individuals of type t, who therefore are new primary cases in previously
uninfected households, τ units of time after the beginning of the within-household epidemic. Denoting by

LBtt′ (σ) =

∫ ∞
0

Btt′(τ)e−στ dτ

the Laplace transform for the function Btt′(τ), the real-time growth rate can be calculated from the matrix

Ω(σ) =

(
LBaa(σ) LBac(σ)
LBca(σ) LBcc(σ)

)
(11)

by imposing that its dominant eigenvalue ρ(Ω) be 1 (Pellis et al., 2010; Diekmann et al., 2012).
For each household composition (na, nc) and either type of primary case p, consider nsim simulated

within-household epidemics started with a single initial infective of type p in a household with na adults
and nc children. For each epidemic e, e = 1, 2, . . . , nsim, let the final number of adults and children be
denoted by Zp,ea and Zp,ec , respectively, and the time of infection of each of the infective adult be T p,ea,ja ,
ja = 1, 2, . . . , Zp,ea . Then an unbiased estimate of Btp(τ) is given by

B̂nsim
tp (τ) =

∑
na,nc

πpna,nc
1

nsim

nsim∑
e=1

kgta Z
p,e
a∑

ja=1

ω
(
τ − T p,ea,ja

)
+ kgtc

Zp,ec∑
jc=1

ω
(
τ − T p,ec,jc

) (τ ≥ 0),

where ω(τ) is the probability density function of the infectious contact interval distribution (see Sup-
plementary Methods, Section 1.1.2; also recall that, in this work, ω is assumed to be independent of
the types of infector and infectee and to be the same for both global and within-household infectious
contacts), ω(τ) = 0 for τ < 0 (infectives do not contribute to transmission before their time of infection),
πpna,nc is the probability that the household of a randomly selected susceptible of type p infected through
a global contact has na adults and nc children, and kgtt′ are the elements of the next-generation matrix of
global contacts Kg, i.e. the average number of cases of type t an individual of type t′ generates through
global infectious contacts only, throughout their entire infectious period (Supplementary Methods, Section
1.2.2).

It is convenient to work directly with the unbiased estimate for the Laplace transform of Btp(τ)

L̂ nsim
Btp

(σ) =
∑
na,nc

πpna,nc
1

nsim

nsim∑
e=1

kgta Z
p,e
a∑

ja=1

e−στ
p,e
a,ja + kgtc

Zp,ec∑
jc=1

e−στ
p,e
c,jc

Mω(σ), (12)

where Mω(σ) =
∫∞
0 ω(ϑ)e−σϑ dϑ is the moment-generating function of the infectious contact interval

distribution. Inserting Supplementary Equation 12 into Supplementary Equation 11 to obtain an estimate

Ω̂ of Ω and solving for ρ
(

Ω̂(σ)
)

= 1 yields an estimate r̂ of the real-time growth rate.

In order to compute the final size and times of infection for each epidemic, we use the Sellke construc-
tion (Andersson and Britton, 2000, Section 2.2) as follows.

Consider a household with na adults and nc children, out of which ba adults and bc children are the
initial infectives, respectively. Denote by Tt,jt the time of infection of the jt-th individual of age class t,
jt = 1, 2, . . . , nt (t = a or c). All initial infectives are assumed to have been infected at time τ = 0, so
that Tt,jt = 0 for jt = 1, 2, . . . , bt (in practice we only need the two cases (ba, bc) = (1, 0) and (0, 1) for
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the computation of r). Each initial susceptible of type t, jt = bt + 1, bt + 2, . . . , nt, is given a resilience
threshold Qt,jt ∼ Exp(1). Because susceptible individuals of the same type are indistinguishable, it is
convenient to index them by increasing resilience thresholds so that, without loss of generality, for each
type t, Qt,bt+1 ≤ Qt,bt+2 ≤ · · · ≤ Qt,nt . As time τ progresses the total infection pressure, Πt(τ) say, acting
on a each susceptible of type t grows. Individual jt of type t gets infected at time τ = Tt,jt at which the
accumulated infection pressure on type t reaches their resilience threshold, i.e. Πt(Tt,jt) = Qt,jt .

Assume we have followed the process until time τ and currently `a adults and `c children have been
infected up to now (including any initial infective), and sa = na − `a adults and sc = nc − `c children are
still susceptible. The infection pressure accumulated up to now towards a susceptible of age class t is

Πt(τ) = λht,a

`a∑
ja=1

∫ τ−Ta,ja

0
ω(σ)dσ + λht,c

`c∑
jc=1

∫ τ−Tc,jc

0
ω(σ)dσ, (13)

where the transmission rates multiplying each sum are the elements of the matrix Λhna,nc defined in
Supplementary Equation 2 and ω is the probability density function of the infectious contact interval
distribution (the same as for global contacts outside the household in this work; extensions to different
infectious contact interval distributions in different environments and that depend on the types of infector
and infectee are trivial).

The next person to get infected, if any, can only be either the adult with index ja = `a + 1 or the
child with index jc = `c + 1, i.e. the susceptible in either group with the lowest resilience threshold. The
potential time of infection τt of the next susceptible in class t, if no other event happens between now and
then, can be found by implicitly solving Supplementary Equation 13 such that Πt(τt) = Qt,`t+1, with the
convention that τt = ∞ if the maximum infection pressure on type t potentially spread by the current
infectives Πt = limτ→∞Πt(τ) is smaller than Qt,`t+1.

If no other infection can be caused in finite time, the epidemic stops. Otherwise, the next event is
given by a new infection of type t′ corresponding to the minimum τt. At that point, the current time is
moved forward to τ = τt′ and the infection pressure of Supplementary Equation 13 is updated, before
checking if someone else will be infected next.

Note that, if both potential times for the next infection τa and τc are finite and, say, τa < τc, then
t′ = a, individual `a + 1 is infected at time τa and the time τc needs to be discarded. However, we know
that individual `c + 1 will certainly be infected, because the infection pressures available even before the
infection of individual `a + 1 was already sufficient for that to happen at some point, let alone if we now
add the contribution to the total infection pressure of the newly infected adult. In fact, the actual time
of infection of the next child can only be anticipated compared to τc.

1.3 Age-stratified model

The population of the age-structured model consists of the same numbers Na and Nc (and proportions
Fa and Fc) of adults and children as in model AH, and the transmission between them is parameterised
in terms of a single next generation matrix

KA =

(
kAaa kAac

kAca kAcc

)
= βA

γ
A − (1− θA)

Nc

Na
(1− θA)φ

ψ(1− θA)
Nc

Na
ψθAφ

 . (14)

The biological parameters ψ and φ are assumed to be the same as in model AH, and γA is the ratio
between the total number of contacts an adult makes both within and between households and the total
number of contacts a child makes in all environments. Again, we choose γA = 1 in the baseline scenario.

Neglecting the household structure, however, affects how individuals interact: in particular, if children
have substantial interaction with other children and would potentially infect many of them, the limited
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number of children in a household forces a child to apparently infect more adults than they would do if
there was no household structure. Therefore we need to re-estimate the assortativity θA, and we do so by
imposing that the incidence ratio of adults versus children in model A matches that of model AH, i.e. by
imposing the condition vA = vAH, where vA is the normalised dominant eigenvector of KA. Although the
vectors have two elements, they are normalised, so the imposed condition is effectively one-dimensional.
Unfortunately, this condition is often not well posed, and there are cases when no value of θA ∈ [0, 1]
leads to a suitable vA. To visualise this problem, the two components of the function vA(θA) and the
constant values of the components of vAH are shown in Supplementary Figure 3 for parameters in the
baseline scenario (R0 = 2, φ = 1, γg = γh = 1 and global random mixing, i.e. θg = Fc), paa = 0.5 and
various values of ψ, suggesting that a unique solution can in general be found when ψ > 1, while it can
be found only in certain cases when ψ < 1. (In reality, the mapping procedure fails also for very large
values of paa and ψ – e.g. see Supplementary Figures 18, 20 and 22.) Further exploration reveals that
the behaviour switch observed in Supplementary Figure 3 for ψ = 1 occurs in general when ψφ = γA,
irrespective of R0, θg or the population structure. Indeed, it is easy to verify from the definition of the
next generation matrix KA (Supplementary Equation 14) that, for ψ = φ = γA, (Fa, Fc)

> is always an
eigenvector of KA, independently of the value of θA. Therefore, when ψ = φ = γA, vA = (Fa, Fc)

>, which
is in general different from vAH whenever paa > 0. Hence, no valid assortativity can be found in this case.

In practice, we focus our analysis on the case of φ ≥ 1 and ψ ≥ 1. In this region, most problems with
the mapping procedure are avoided. More precisely:

• Under random mixing, γA = 1 and hence the mapping procedure fails for φ = ψ = 1; however, in this
case, there is by definition no difference between adults and children in both biological and mixing
aspects. We artificially set θA = θg in this case, as this choice has no impact on the predictions of
model A, because of the special structure of the NGM.

• When mixing is assortative, data suggests γA < 1 (Supplementary Methods, Section 1.6.3) and
hence a valid assortativity can be found for φ = ψ = 1.

• As mentioned above, the mapping procedure does fail for excessively large values of paa and ψ.
However, such values are arguably biologically unreasonable, and this problem was not encountered
in the parameter range used when focusing on our baseline population of Great Britain.

Eventually, to allow a more robust exploration, we keep track of parameter combinations for which the
mapping fails as, when no value of assortativity for model A can be found, we conclude that households
are essential in the model structure to reproduce the observed age-stratified incidence and we discard
model A as inaccurate. Using this principle, in the Supplementary Discussion, Section 2.3.3, we explore
a wider parameter space, allowing children to be less susceptible and/or less infectious than adults, and
hence covering a wide range of values for which the mapping procedure fails.

In Supplementary Figures 10, 20 and 22 we plot the assortativity θA under different scenarios and
we observe how the presence of households can induce both assortative and disassortative mixing. This
observation is not new, as cross-generational disassortative mixing (children having strong contacts with
carers) is evident in contact survey studies (e.g. Mossong et al., 2008). However, its implications in the
present context need to be investigated further.

The basic reproduction number for model A is simply the dominant eigenvalue of KA. Again, the
dominant eigenvalue of KA can be seen as a function of the overall multiplicative constant βA. In
particular, given any if square matrix J and any scalar ν, the dominant eigenvalue ρ(νJ) = νρ(J), and
so we know that R0

(
βA
)

is linear in βA and therefore invertible. Because R0(0) = 0 and R0(β
A) → ∞

as βA →∞, we can always find a suitable value of βA leading to any predefined value of R0.
The final size of model A can be computed using well-established asymptotic results for multitype

models. Adapting from Andersson and Britton (2000) to the present case where the fraction of initial
cases in either adults or children is negligible, and using the current notation, the proportions zAa and zAc
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of the populations of adults and children (0 ≤ zAa ≤ 1, 0 ≤ zAc ≤ 1) that are ultimately infected are the
implicit solution of the system

1− zAa = exp

(
−
(
kAaa
Na

Naz
A
a +

kAac
Na

Ncz
A
c

))
= exp

(
−
(
kAaaz

A
a +

Fc
Fa
kAacz

A
c

))
1− zAc = exp

(
−
(
kAca
Nc

Naz
A
a +

kAcc
Nc

Ncz
A
c

))
= exp

(
−
(
Fa
Fc
kAcaz

A
a + kAccz

A
c

))
.

Each of these equations expresses a balancing condition, where the left-hand side represents the probability
that a randomly selected initial susceptible of a specific age class is still susceptible at the end of the
epidemic, while the right-hand side gives the probability that the susceptible has escaped the infection
pressure due to all individuals infected throughout the epidemic, irrespective of their age class (note that
kAij/Ni represents the total infectivity a single infective of type j exerts on a specific individual of type i).
It can be proved (Scalia-Tomba, 1986) that when R0 > 1 the system admits a single positive solution (in
addition to zAa = zAc = 0, which is always a solution).

The peak incidence and the time to the peak are again computed using individual based stochastic
simulations (Supplementary Methods, Section 1.5) with the newly estimated assortativity, no household
structure and starting with n0 initial cases consisting of adults and children in proportions given by the
components of the vector vA = vAH.

Similarly to Section 1.2.9 of the Supplementary Methods, the computation of the real-time growth
rate r requires the infectivity profile from an infective of type t′ towards any individual of type t (t, t′ = a
or c), which in model A is kAt,t′ω(τ). Therefore, the matrix with the Laplace transforms of these infectivity
profiles can be simplified as

∫ ∞
0

kAaaω(τ)e−στ dτ

∫ ∞
0

kAacω(τ)e−στ dτ∫ ∞
0

kAcaω(τ)e−στ dτ

∫ ∞
0

kAccω(τ)e−στ dτ

 = KAMω(σ), (15)

where, as for model AH (Supplementary Methods, Section 1.2.9),Mω is the moment-generating function
of the infectious contact interval distribution, i.e.

Mω(σ) =

(
1 + σ

TG
α

)−α
, σ > − α

TG
.

The real-time growth rate is found by imposing that the dominant eigenvalue of the matrix in Supple-
mentary Equation 15 be 1 and, because ρ

(
KA
)

= R0 by construction,

r =
α

TG

(
R

1
α
0 − 1

)
.

1.4 Households model

In the pure households model, individuals are all equal, so the model is parametrised in terms of a global
infectivity parameter βHg and a within-household infectivity parameter βHh . The parameter βHg represents
the average number of global contacts an individual makes outside the household, throughout the entire
infection period: during the stable exponential growth window all such contacts lead to infections of
new household primary cases. Similarly, βHh is defined as the average number of infectious contacts an
individual makes in the household (i.e. βHh would be the number of new cases generated by an individual
in a fully susceptible, infinitely large household).

As suggested from households studies, although the person-to-person transmission rate can depend
non-trivially on the household size (Cauchemez et al., 2009; House et al., 2012), between the parsimonious
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model choices of density- and frequency-dependent transmissions, the latter one is by far more accurate
(Cauchemez et al., 2004, 2009). Therefore we assume βHh to be independent of the household size and we
assume that the average number of infectious contacts from an infective to any other randomly selected
household member in a household of size n is given by

λHn =
βHh
n− 1

.

Assuming that in a real-case scenario, the within-household infectivity is measured from household studies,
we compute βHh by matching the household SAR of model AH.

With considerations very similar to those exposed in the Supplementary Methods, Section 1.2.6, we
assume that the hypothetical household study from which βHg would be estimated takes place during
the stable exponential growth window and follows households until the first household epidemic finishes.
With the same notation as in the Supplementary Methods, Section 1.2.6, the SAR in a household study
where adults and children are indistinguishable would be computed as

SAR =

∑
l∈L

(
Z l − 1

)
∑
l∈L

(nl − 1)
=

(
nmax∑
n=1

∑
l∈Ln

Z l

)
− L(

nmax∑
n=1

∑
l∈Ln

nl

)
− L

=

nmax∑
n=1

Lnµ̂n − L
nmax∑
n=1

nLn − L
,

where µ̂n is the average observed epidemic size (including the initial case) in a household of size n.
Dividing both the numerator and the denominator by L, we obtain again

SAR =

nmax∑
n=1

µ̂nπ̂n − 1

nmax∑
n=1

nπ̂n − 1

=
µ̂− 1

χ̂− 1
.

Under the assumption that model AH represents the truth, if households of size 1 were included in the
study, the observed household size distribution {π̂n} would be approximately the same as the distribution
{πvn}. Note that the distribution {πvn} can only be estimated from collected data, i.e. it cannot be
constructed from the basic ingredients of model H, as it depends on the vector vAH

h . In other words, the
household size distribution of the observed household study is not the household size distribution {hn}
nor the size-biased distribution {πn} because, for example, children could be more susceptible than adults,
and hence more likely to be household primary cases, and they also typically more likely to reside in larger
households. Similarly, µ̂n should be approximated by µn, defined as the average size of a single epidemic
in a household of size n infected during the stable exponentially growing window. As a consequence of
these two approximations, χ̂ ≈ χv (as for model AH), µ̂ ≈ µH, where µH : =

∑nmax
n=1 π

v
nµn, and therefore

SAR = SARH : =
µH − 1

χv − 1
.

The average size µn of a within-household epidemic in a household of size n can be computed from the
full distribution of final sizes, for which standard numerical techniques are available (Ball, 1986; Andersson
and Britton, 2000; Addy et al., 1991). In brief, adapting Equation 2.4 of Andersson and Britton (2000)
to count the initial infectives directly into the final size, the probability Pb,n(u) that an epidemic in a
group of size n, started with b initial infectives, results in u individuals ultimately infected (including the
initial b, i.e. u = b, b+ 1, . . . , n), with a non-random total infectivity from each infective to each specified
susceptible given by λHn , can be obtained as the solution of the system

∑̀
b=u

(
n− u
`− u

)
Pb,n(u)

/[
exp

(
−(s− `)λHn

)]u
=

(
n− b
`− b

)
, ` = b, b+ 1, . . . , n.
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(The exponential at the denominator is the moment-generating function of a random variable with a
constant value). The average final size µn is then obtained when there is a single initial infective as
µn =

∑n
u=1 uP1,n(u) for n = 1, 2, . . . , nmax.

Given that SARH depends on µn, which is a function of λHn = βHh /(n − 1), we are interested in the
value of βHh such that SARH = SARAH, i.e. the household secondary attack rate of model AH. In practice
we equivalently find the value of βHh such that µH = µAH. Such a value of βHh exists and is unique,
because µH = µH

(
βHh
)

is increasing in βHh , with µH(0) = 1 and µH
(
βHh
)
→ χv as βHh → ∞ (everyone in

the household is infected immediately).
The computation of R0 for model H follows the method suggested in Pellis et al. (2012). Briefly,

following Appendix A of Pellis et al. (2012), first the probabilities Qb(m, s) that m out of s susceptibles
escape infection from b infectives need to be computed (b, s = 1, 2 . . . and m = 0, 1, . . . , s). Given the
present model with a non-random time-since-infection infectivity profile is equivalent to a simple Reed-
Frost model, such probabilities are

Qb(m, s) =

(
s

m

)
(qb)m(1− qb)s−m,

where the probability q that a single susceptible escapes infection from a single infective is q = e−λ
H
n .

Then the average numbers µi,b,s of cases infected in generation i of a within-household epidemic with b
initial infectives and s initial susceptibles can be obtained from the recursive relation

µi,b,s =
s−i+1∑
j=1

Qb(s− j, s)µi−1,j,s−j , b, s = 1, 2, . . . and i = 1, 2, . . . , s,

with µ0,b,s = b and µi,b,0 = 0 for all valid b, s and i. (The sum could go up to s, but µi−1,j,s−j = 0 for
s − j < i − 1 as there are not enough susceptibles to reach generation i − 1 with at least one cases in
each of them.) The interest is specifically in the average number µi,n = µi,1,n−1 of cases infected in each
generation i = 0, 1, . . . , n− 1 of a within-household epidemic in a household of size n with a single initial
infective and n− 1 initial susceptibles, so it is sufficient to compute µi,b,s for s = 1, 2, . . . , n − 1 and, for
each s, for b = 1, 2, . . . , n − s (and i from 1 to s). The average number of cases in each generation are
then averaged over the size-biased household size distribution, obtaining µi =

∑nmax
n=1 µi,nπn and, from

Theorem 1 of Pellis et al. (2012), R0 is computed as the dominant eigenvalue of the matrix

MH =


βHg µ0 βHg µ1 · · · · · · βHg µnmax−1

1 0

1
...

. . .
...

1 0

 ,

where nmax is the largest household size (note that the unit elements occupy the subdiagonal, not the
main diagonal).

The global infectivity βHg is then computed to match the same R0 as initially specified in model AH.

Again, this is always possible because R0

(
βHg
)

is monotonic, with R0(0) = 0 (the infection never exits

from an infected household) and R0

(
βHg
)
→∞ for βHg →∞.

Once the desired parameters have been obtained, the final size is computed using standard analytical
techniques (e.g. Andersson and Britton, 2000; Ball and Neal, 2002). Adapting the notation to resemble
more closely the argument in the Supplementary Methods, Section 1.2.7, first denote by Pn(u|λnh, q)
the probability that u individual will eventually experience infection in a household of size n, where all
individuals are initially susceptible, each infective exerts an infection pressure λHn = βHh /(n− 1) on each
other household member and each individual escapes infection from outside, independently of any other,
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with probability q. Such probabilities can be obtained numerically by solving the 1-dimensional equivalent
of the system in Supplementary Equation 10, i.e.

∑̀
u=0

(
n−u
`−u
)
Pn
(
u|λHn , q

)
qn−` (M(`))u

=

(
n

`

)
,

for 0 ≤ ` ≤ n, where
M(`) = exp

(
−(n− `)λHn

)
is the moment-generating function of a constant random variable.

Let z denote the fraction of the population that is ultimately infected by a large epidemic. The
infection pressure coming from outside the household a specified susceptible has to withstand to escape
infection is due to the cumulative infectivity of all individuals infected throughout the epidemic, and in a
finite population of size N is approximately given by

q = exp

(
−Nz

βHg
N

)
= exp

(
−βHg z

)
.

As the population size N tends to ∞, this escaping probability becomes exact and distinct individuals
escape infection independently, so z needs to satisfy the self-consistent condition

z =

nmax∑
n=1

πn
µn
(
λHn |q(z)

)
n

,

where µn =
∑n

u=1 uP
n(u|λnh, q(z)) is the average final size of a within household epidemic where all

individuals start susceptible and escape infection from outside with probability q (of which the explicit
dependence on z itself is highlighted). Note that the final size can be seen as a balancing condition,
where the left-hand side represents the probability that a randomly chosen initial susceptible is ultimately
infected and the right-hand side the proportion of individuals infected in an epidemic within the household
of a randomly selected individual after conditioning on the household size.

The peak incidence and time to the peak are computed from stochastic simulations starting with n0
cases, who are all initial cases in different households. Despite adults and children being indistinguishable
from an epidemiological point of view, they are chosen in proportions given by the components of the
vector vAH

h to ensure that the average size of an infected household is close to χv already from the start of
the epidemic, thus minimising the impact of transient dynamics on the computation of the time to peak
incidence.

Finally, the real-time growth rate r, which is needed to perform the model mapping at constant r
instead of R0 as considered in the Supplementary Discussion, Section 2.3.2, can be computed via Monte-
Carlo simulations with the one-dimensional equivalent of the method explained in the Supplementary
Methods, Section 1.2.9, which is presented below and is also described, in a slightly different notation, in
Appendix G of Ball et al. (2016).

Let B(τ) be the average infectivity profile of the household of a randomly selected individual who
is infected globally, i.e. the rate at which primary cases in new households are infected through global
contacts only by any individual infected in a within-household epidemic started by a single primary case
that has been infected globally. Then the real-time growth rate can be found as the implicit solution of
LB(r) = 1 (Pellis et al., 2010; Diekmann et al., 2012), where

LB(σ) =

∫ ∞
0

B(τ)e−στ dτ (16)

is the Laplace transform of the average household infectivity profile B(τ), which we need to estimate via
Monte-Carlo simulations of within-household epidemics.
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For each household size n, consider nsim epidemics with a single initial infective and n − 1 initial
susceptibles. For each epidemic e, e = 1, 2, . . . , nsim, let T e1 = 0 be the time of infection of the initial
infective, Ze the final epidemic size, including the initial infective, and T ej the time of infection of each
infective j, j = 2, 3, . . . , Ze assuming the epidemic starts at time τ = 0. Then the average household
infectivity profile from the nsim epidemics is

B̂nsim(τ) =

nmax∑
n=1

πn
1

nsim

nsim∑
e=1

βHg Ze∑
j=1

ω
(
τ − T ej

) (τ ≥ 0),

where the infectious contact interval distribution ω(τ) = 0 for τ < 0. Then an unbiased estimator of
LB(σ) is

L̂ nsim
B (σ) =

1

nsim
βHg

nmax∑
n=1

nsim∑
e=1

Ze∑
j=1

πne−σT
e
jMω(σ) (σ > σ0), (17)

where πn is the probability that the household of a randomly selected individual has size n, Mω(σ) is
the moment-generating function of ω and σ0 = inf {σ :Mω(σ) <∞}. Solving L̂ nsim

B (σ) = 1 numerically
gives an estimate r̂nsim of r.

To compute the final size and time of infections for each epidemic, we use the Sellke construction
(Andersson and Britton, 2000, Section 2.2). Consider a household of size n, and let Qj , j = 1, 2, . . . , n
be the resilience thresholds associated to each individual j. Set Q1 = 0 for the initial infective, let
Qj ∼ Exp(1) for all other j = 2, 3, . . . , n, and assume without loss of generality that individuals are
numbered by increasing Qj .

Suppose we have followed the epidemic until time τ and there are currently ` infectives, including the
initial one. Then the total infection pressure acting on the remaining susceptibles is

Π(τ) =
βHh
n− 1

∑̀
j=1

∫ τ−Tj

0
ω(σ) dσ.

If Π = limτ→∞Π(τ) < Q`+1, then the epidemic stops because the total infection pressure from the current
infectives is insufficient to infect even individual ` + 1, i.e. the weakest of the remaining susceptibles.
Otherwise, individual ` + 1 becomes infected at time T`+1 such that Π(T`+1) = Q`+1 and the total
infection pressure needs to be updated to decide whether anyone else is further infected and when.

1.5 Individual-based stochastic simulation

The stochastic simulation is used to calculate those outputs that depend on the particular shape of the
infectivity profile and for which no exact analytical result is available for a time-since-infection model,
namely the average daily peak incidence and the average time to the peak. The simulation is also used
to cross-check the average epidemic final size calculated analytically as described in the Supplementary
Methods, Sections 1.2.7, 1.3 and 1.4.

The stochastic simulation is individual-based, i.e. it keeps track of the characteristics of each individual
separately. These are: index (ID); age class (adult or child); current infectious state (S, I or R, for
susceptible, infectious and recovered); index of the household they belong to (HID); time of infection; and
time of recovery. Households are also tracked, and each of them has: an index (HID), the numbers of
adults and children in it, and the vectors with the IDs of such adults and children.

The simulation is also event-based, i.e. as the epidemic unfolds new events are generated and stored
in a time-ordered list. This allows the simulation to be exact in time even if the model is non-Markovian
and hence standard asynchronous algorithms, such as the Gillespie algorithm (Keeling and Rohani, 2008,
Section 6.3), cannot be used. Each stored event consists of: time of occurrence; type of event (infectious
contact or recovery); infectious contact type, i.e. where it occurred (within-household or global); ID of
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the subject (the infector); ID of the object (the infectee); and pointer to the next event in the list. In the
case the event is a recovery, the infectious contact type and ID of the object are irrelevant.

Assume that we have followed the epidemic until time τ . If the event at time τ is a recovery, of
individual i say, the status of i is changed from I to R and the time of recovery is stored. If the event
is an infectious contact from another individual to i and i is still susceptible, the status of i is changed
from S to I, the time of infection is stored and the infectious life of i is then constructed as follows.

Consider the case when i is an adult. First, the random numbers of infectious contacts i has with
other adults in the same household Y h

a,i ∼ Poi
(
khaa
)

and in the community Y g
a,i ∼ Poi (kgaa) are drawn.

Then, for jh = 1, 2, . . . , Y h
a,i and for jg = 1, 2, . . . , Y g

a,i the ID of the potential infectee is selected uniformly
at random among the (other) adults in i’s household and all (other) adults in the population, respectively.
If jh and jg refer to individuals that are already infectious or recovered at time τ , the event is discarded.
Otherwise, if they refer to a susceptible individual, their status is marked as X, to denote they will receive
an infectious contact and ultimately be infected, and the time for the infectious contact relative to the
infection of i is drawn from the infectious contact interval distribution ω. If the status of the potential
infectee is already X, it means the same individual has already received an infectious contact from i
(a repeated infectious attempt in the household, which can be relatively common in a small household,
a global infectious contact made with a member of the same household or a repeated global infectious
contacts made with the same individual – the last two being very unlikely events, but possible in a finite
population), so the relative time since the infection of i is drawn from ω and only stored if smaller than
the previously stored relative infectious contact time. The same procedure is then repeated for all children
in the same household of i and in the community. Finally, all these infectious contact events are stored in
the event list and all individuals marked as X are re-labelled as S, because they are all still susceptible at
time τ and could potentially be infected by another infective between time τ and the time of the earliest
infectious contact from i.

Note that the procedure just described may leads to some infectious contacts being stored that will
not result in an infection, e.g. an infectious contact from i to j that occurs at time τ ′ for a j that is
susceptible at time τ (i.e. when the infectious life of i is constructed) but who is infected by another
infective between τ and τ ′. Then, when the event list is followed that time τ ′ arrives, j will have already
been marked as I or R and no further action is taken.

The initial infectives are infected at time t = 0 and the simulation starts by constructing their infectious
life.

Maintaining the time-ordered list of events is computationally costly, because the time intervals in-
volved when constructing the infectious life of an individual i remain of the same order of magnitude
throughout the epidemic, while the density of events increases towards the peak of the epidemic roughly
proportionally with the peak size. The complexity of the algorithm where one single temporal list is
searched for the right position where to store an event, which experimentally appears to scale roughly
as O(N3), can be reduced to scale roughly linearly with the population size N by using a hash table as
follows.

A (small) time interval ∆ is chosen and the list of events is broken into a collection of sublists, each
one contained in the time interval [κ∆, (κ + 1)∆], κ = 0, 1, 2, . . . , so that when a new event is created
at time τ , the value of κ corresponding to the time interval in which τ falls is easily found and only the
relevant sublist is followed until the right time is reached and the event is stored. If ∆ is too small many
intervals are empty or almost empty toward the beginning or end of the epidemic, while if ∆ is too large
time the sublists towards the centre of the epidemic are excessively long and time-consuming to search:
therefore, a compromise between memory and computational cost is found for an intermediate value of ∆.
For fixed parameter values, such optimal value of ∆ is determined by the size of the peak, which grows
linearly with the population size N . The optimal constant of proportionality depends on the parameter
values in a non-trivial fashion, so it is chosen by timing the epidemics for a number of different parameter
combinations to find an acceptable compromise.

After each simulation, which is exact in time, the epidemic is post-processed in discrete time steps of

25



1 day.
For each parameter combination of interest, 100 realisations of the epidemic in a population of N =

100 000 are performed, with n0 = 50 initial infectives.
A major outbreak is defined as an outbreak infecting more than 1% of the total population, including

the n0 initial infectives. Major epidemics are then shifted in time and synchronised at the day of the
peak, in order to superimpose properly their stable exponential growth windows and limit the effects of
the random delays at the beginning of each epidemic on the time-point averages of the epidemic curves
of all 100 realisations for each model and parameter combination.

The surface of the time to peak incidence (see Figure 1c of the main text) is still highly sensitive to
stochastic variations. Limiting this noise is the main reason for the choice of the relatively large number
n0 = 50 of initial infectives. Furthermore, initial cases are divided among adults and children as required
by the model mapping procedure (see Methods and Supplementary Methods, Sections 1.2.8, 1.3 and 1.4),
i.e. in numbers given by the vector n0v

AH
h with components rounded to the nearest integers and with each

of them being a primary case in a different household. This reduces the time it takes for the proportions of
cases of each type to converge, from the initial conditions, to the stable values observed during the stable
exponential growth phase, and therefore to highlight structural differences between epidemic speeds in
different models.

The epidemic is coded in C++ and each run of 100 simulations requires a few to a few tens of seconds
(depending on parameter values, in particular the within-household infectivity) on a common laptop.

1.6 Data and parameter values

1.6.1 Population structure of Great Britain

Based on census data from 2001 (Office for National Statistics, 2001), the population of Great Britain
consists ofN = 56 047 012 individuals, divided in adults and children in proportions Fa = Na/N = 77.27%
and Fc = Nc/N = 22.73%. Supplementary Table 1 describes how adults and children are distributed in
households. A dependent child is defined in the Office for National Statistics (2001) to be a person in a
household aged 0 to 15 (whether or not in a family) or a person aged 16 to 18 who is a full time student
in a family with parent(s). From the distribution {hna,nc} of the probability that a randomly selected
household has composition (na, nc) (Supplementary Table 1), using Supplementary Equation 1 we obtain
the distributions of compositions of the household of a randomly selected adult

{
πana,nc

}
(Supplementary

Table 3A) and of a randomly slected child
{
πcna,nc

}
(Supplementary Table 3B).

Ignoring the distinction between age classes, from {hna,nc} we derive the distribution {hn} of the size
of a randomly selected household and, in turn, the distribution {πn} of the size of the household of a
randomly selected individual (i.e. adult or child in proportions given by Fa and Fc), and the distribution{
h̃n

}
of the size of a randomly selected household, conditional of having more than one member.

Finally, from the distributions
{
πana,nc

}
and

{
πcna,nc

}
, we obtain the distributions {πan} and {πcn} of

the size of the household of a randomly selected adult and children. All these distributions, together with
their mean values, are reported in Supplementary Table 2. Note how larger households tend to contain
many children, so that the household of a randomly selected child has an average size (4.20 members)
which is significantly larger than that of the household of a randomly selected individual (3.07 members).

1.6.2 Other population structures

To test how the conclusions of our analysis are affected by the population structure, as well as to test
how applicable they are to other (in particularly, developing) countries, we briefly consider other two
populations: that of Sierra Leone, one of the countries with a largest proportion of population consisting
of children, and that of South Africa, which offers a intermediate population structure that can be
compared with the two extremes.
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The distribution of adults and children in households are obtained from the Demographic and Health
Surveys Program (ICF), which reports countries’ household information, including the age (in years) of all
members. Here, all individuals up to the age of 18 (included) have been accounted as children. Although
not necessarily the most appropriate choice for a developing country context, this maintains some degree
of uniformity with the UK census data and makes the difference with the social structure of Great Britain
as striking as possible. This choice results in a fraction of children Fc = 53.81% for Sierra Leone and
Fc = 45.92% for South Africa, as opposed to Fc = 22.73% of the Great Britain. Before usage, the data
was adjusted by the accompanying weights, according to the database instructions (ICF).

The household composition structure of Sierra Leone, obtained from the dataset published with the
2008 Sierra Leone Demographic and Health Survey (Statistics Sierra Leone – SSL and ICF Macro, 2009), is
described in Supplementary Table 4 and summary population distributions are reported in Supplementary
Table 5. Instead, the household composition of South Africa, obtained from the dataset published with
the 1998 South Africa Demographic and Health Survey (Department of Health/South Africa and Macro
International, 2002), is described in Table 6 and summary population distributions are reported in Table
7.

To compromise between accuracy and computational cost, all households with 18 or more members
have been ignored and the distribution of household composition has been renormalised. For Sierra Leone
(Statistics Sierra Leone – SSL and ICF Macro, 2009) this amounts to cutting 0.558% off the distribution
tail, reducing the fraction of children from 53.90% to 53.81%, the average size of a randomly selected
household from 5.92 to 5.85 and the average size of the household of a randomly selected individual from
7.46 to 7.24. The 22 individuals with missing age (out of the 41,985 in the dataset from Statistics Sierra
Leone – SSL and ICF Macro, 2009) have been counted as children (again, in the spirit of exacerbating
the difference with the population of Great Britain): counting them as adults would have led to a fraction
of children of 53.76%. For South Africa (Department of Health/South Africa and Macro International,
2002), only 0.0937% of households have 18 or more members. Ignoring those and renormalising the rest
of the distribution reduced the fraction of children from 46.00% to 45.92%, the average size of a randomly
selected household from 4.28 to 4.27 and the average size of the household of a randomly selected individual
from 5.78 to 5.72. The 31 individuals with missing age (out of the 52,906 in the dataset from Department
of Health/South Africa and Macro International, 2002) have been counted as children: counting them as
adults would have led to a fraction of children of 45.85%.

1.6.3 Contact patterns for the United Kingdom

Our baseline scenario is characterised by random mixing in order to ignore the contribution of age-stratified
heterogeneities in the contact patterns. Their presence would make the model comparison unfair, because
model H is intrinsically unable to capture them while model A, which is already more flexible and shares
two parameters (φ and ψ) with model AH, is structurally designed to accommodate for them. However,
realistic contact patterns are far from random, so in a real-world scenario the age stratification would be
even more relevant than the household structure compared to what the baseline scenario of the study
reveals. We argued on it already in Figure 3 of the main text.

We performed a simple analysis of the raw UK data from the POLYMOD study (Mossong et al.,
2008) and obtained the estimates in Supplementary Table 8. Assuming for simplicity that all individuals
up to 18 years of age (included) are children and discarding all members of households with missing or
contradicting information, we obtained 621 adults having 6,885 contacts and 373 children having 5,468
contacts, for a total of 12,353 contacts (sometimes with the same person in different environments).

We used information about all types of contacts (whether physical or not) and ignored any information
concerning the duration and intensity of the contacts. In some cases, only a range of possible ages of
the contact was given, in which case we used the lower bound of the range. This may have resulted in a
possible miscount of the age class of the contact in favour of a child in at most 187 cases (31 at home,
156 outside). A possible cross-check of the estimates obtained here comes from Supporting Information
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Table S8.4 (all contacts for Great Britain) of Mossong et al. (2008). A quick calculation of the fraction of
contacts an individual 0-19 has with other individuals 0-19 out of their total contacts leads to an estimate
of the overall assortativity of children on 58.1%, very close to the 57.9% obtained here in Table 8.

The values of θg, γh, γg and γA in Supplementary Table 8 are the only ones required to parametrise
the NGMs (the remaining values are not used in this analysis). However, their numerical values needs to
be treated with care due to the many limitations in the data, most notably:

1. we used both physical and non physical contacts equally;

2. we neglected all information about frequency and duration of the contact;

3. household contacts are defined simply as contacts occurring while at home, irrespective of whether
the contacted individual is another household member or not;

4. some of the contact occurred outside the household might have been with a household member.

It is therefore difficult to blindly trust such estimates, so we only use them as rough guidelines of the
UK mixing patterns and explore a few intermediate scenarios in the Supplementary Discussion, Section
2.3.1. Note also that we discard the value obtained as the household assortativity of children and instead
assume random mixing within the household. The main reason is that the concept of assortativity within
the household is not well defined, as it heavily depends on the household composition and a unique value
imposed a priori might lead to negative elements of the NGM for certain household compositions.

Based on these estimates, we take as mixing parameters for the UK, θg = 0.58 and γg = γh(= γA) =
0.75 and, for simplicity, use a single parameter γ = γg = γh = γA to refer to all of them.

1.6.4 Summary of input parameter values

A summary of the range of parameter values considered in this study is reported in Supplementary Table
9. GB refers to Great Britain, SL to Sierra Leone and SA to South Africa. The baseline population is
that of Great Britain, to which baseline values apply. The range 1-4 for ψ is explored in steps of size 0.2
for all populations. For Great Britain paa ranges in 0-0.95 in steps of size 0.05, while the extended range
of values for ψ (Supplementary Discussion, Section 2.3.3) is explored by letting log2(ψ) range between -2
and 2 in steps of 0.2. For Sierra Leone, only the range 0-0.475 for paa is explored, in steps of 0.025. For
South Africa, the range for paa is 0-0.63, in steps of 0.03.

Note that the values of γg and γh are both 1 under random mixing, and hence γA = 1 too. Furthermore,
their estimate from the POLYMOD data (Supplementary Methods, Section 1.6.3) are so close to each
other that we deemed it convenient to set both of them to 0.75. Therefore, given that their values are
always the same in every context, we conveniently define a unique parameter γ and set γ = γg = γh = γA

in the rest of the study.

1.6.5 Parameter values for infections explored in the main text

The parameter values used in Figure 3 in the main text should only be regarded as ballparks, because
past infections about which we have enough data either did not show community-wide spread (e.g. SARS)
or were affected by prior immunity (even the 2009 H1N1 influenza pandemic: see Chen et al., 2009, and
Ajelli et al., 2011).

For an infection similar to the H1N1 2009 pandemic influenza we choose R0 ≈ 1.5 (Fraser et al., 2009),
φ ≈ 1, ψ ≈ 2 (Cauchemez et al., 2009) and a wide range of values for paa (from 0.1 to 0.4), reflecting a
range of SAR estimates found in the literature (House et al., 2012), from <10% (Cowling et al., 2010)
to 40% (House et al., 2012). Early, real-time estimates of a SAR of about 13% (Cauchemez et al., 2009)
correspond in Supplementary Tables 10 and 12 to a value of paa ≈ 0.15.
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For parameters in line with the 1918 influenza pandemic, we take from Fraser et al. (2011) values of
R0 ≈ 2, φ ≈ 2, ψ ≈ 1 and SAR estimates of about 30%, which from Supplementary Tables 10 and 12
corresponds to a paa ≈ 0.3.

A measles- or chickenpox-like infection would have an extremely high R0 and adults almost totally
protected by prior immunity, but not necessarily less infectious. Therefore, in Figure 3 in the main text we
use R0 ≈ 4 and φ ≈ 1. There is little information on ψ and paa, but they relate to the amount of within-
household child-to-child infectivity pcc by the equation 1 − pcc = exp (−ψβhφ/(n− 1)) = (1 − paa)ψφ.
Simpson (1952) estimated pcc to be about 0.75, thus leading to the range of possible choices of ψ and φ
presented in Figure 3 of the main text.

2 Supplementary Discussion

2.1 Numerical results with random mixing

2.1.1 Early epidemic indicators and mapped parameters

The amount of within-household transmission has been measured by the parameter paa, or equivalently
by the parameter βh, to which paa is biunivocally related (see Supplementary Figure 2). Despite paa
depending in a non-trivial way on the household composition distribution (unlike βh), we deemed it
nevertheless more intuitive that βh. In practice, neither of them is particularly intuitive. More directly
informative quantities could be the household secondary attack rate (SAR) and the proportion Fh of total
transmission that occurs within the household. Unfortunately, those quantities also depend, in addition
to the household composition distribution, on the relative infectivity φ and susceptibility ψ of children
versus adults and also on R0 (in the case of the SAR, only mildly and indirectly on R0, through the
computation of the vector vAH

h ). In particular, the dependence on ψ would have made the axes in most
plots presented in this manuscript non-independent of each other. To improve quantitative understanding
of paa, we report in Supplementary Tables 10 and 11 both the SAR and the within-household fraction Fh
of total transmission, in the baseline scenario of random mixing (values for more realistic mixing patterns
are reported in Supplementary Tables 12 and 13 and commented on in the Supplementary Discussion,
Section 2.2.1). However, in order to understand better what parameters they depend on, we first discuss
the age-stratified incidence.

After that, in this Section we also explore the implications that the household structure has for the
apparent assortativity estimated when households are neglected.

Age-stratified incidence. The technique explained in Supplementary Methods, Section 1.2.4, leads
to the generation of a matrix M from which both R0 and the vector vAH = (va, vc) for the fractions
of adults and children in the incidence can be derived. We report in Supplementary Figure 4A the
value in percentage of the component vc of vAH for varying values of R0, φ, ψ and paa. Note that, for
γ = γg = γh = 1 and θg = Fc (baseline values), the global NGM takes the particular structure

Krandom
g ∝

(
Fa Faφ

ψFc ψFcφ

)
,

where the constant of proportionality depends only on R0. Therefore, the value of vc correctly turns out
to be Fc whenever there is no household transmission (paa = 0) and children are as susceptible as adults
(ψ = 1). Note that this is true irrespective of φ as, no matter how infectious adults and children are,
new global infections are still generated by both of them in proportions given by (Fa, Fc). This argument
holds also for ψ 6= 1, although some rescaling is needed, so that vc = ψFc/(Fa + ψFc) . Note also that
the effect of changing R0 is barely visible. Intuitively, this is the case because changing R0 only affects
Kg, thus modifying only part of the elements of M , from which we then extract the dominant eigenvector

29



vAH. In addition to this indirect chain of influences, the high sensitivity of the elements of M to changes
in ψ and paa can also contribute in obscuring the already weak influence of R0 on vAH.

We then report in Supplementary Figure 4B the component vch of the vector vAH
h = (vah, v

c
h)> of

proportions of adults and children who start new household epidemics. Note however that, because of the
specific structure of Krandom

g and the fact that vAH
h = Krandom

g vAH, we always have vch = ψFc/(Fa + ψFc) ,

irrespective of the values of vAH (and therefore of R0, φ and paa).

Household secondary attack rate. Supplementary Table 10 and Supplementary Figure 4C reports
the household SAR for different values of ψ, φ and paa. Each row in each sub-table of Supplementary
Table 12 needs to be interpreted with respect to the value of the average size of a household infected
during the stable exponential growth window, χv, reported in the rightmost column. Because the average
size χv of a randomly infected household during the stable exponential growth window depends only on
the population structure and the vector vAH

h , in the baseline scenario of random mixing it only depends
on ψ. The average size of an epidemic in such a household, however, depends also on paa and φ. R0

has no impact on either of them. Note how the average size of an infected household can be significantly
larger than the average size of a randomly selected one or even of the household of a randomly selected
individual.

Within-household fraction of total transmission. Unlike the household SAR, the fraction of total
transmission that occurs in households depends also on the amount of global transmission and therefore,
even under random mixing, on all the parameters. It is reported in Supplementary Table 11 and Supple-
mentary Figure 4D, for different parameter values. It is worth noting that, under baseline random mixing,
the rule of thumb that a third of the total transmission occurs in household (Ferguson et al., 2006; Fraser,
2007; Pellis et al., 2010) is approximately satisfied for parameter values of pandemic influenza, at least in
the UK (i.e. values of paa in the highest range for points 1 in Figure 3 of main text, in line with the SAR
estimates from the careful analysis of House et al., 2012, concerning Birmingham).

Assortativity of model A. The assortativity θA for model A is mapped by imposing that model A has
the same proportions of adults and children in the incidence as in model AH, i.e. by imposing the condition
vA = vAH. We plot its value for various possible choices of R0, φ, ψ and paa in Supplementary Figure
10A (see Supplementary Discussion, Section 2.2.1) to invite immediately a comparison between random
and assortative mixing. As mentioned in the Supplementary Methods, Section 1.3, the assortativity is
not well defined for φ = ψ = 1 under random mixing (although we artificially set θA = θg in this case, as
this choice does not affect the results of model A). Therefore, the plot covers only the range 1.2 ≤ ψ ≤ 4,
i.e. ψ = 1 is discarded. Although this is not necessary in the case of assortative mixing or when φ > 1,
the same range for ψ is used for convenience and easier visual comparison.

It is interesting to notice that the contribution of the household structure is not at all trivial, as it
forces an apparent mixing that, in different parameter regimes, can be either more or less assortative
than it actually is. It is also worth noting that these higher and lower apparent assortativity values both
appear for strong within-household infectivity, and which one occurs depends almost exclusively on the
relative susceptibility of children versus adults.

A better understanding of the interaction between household structure and assortativity is needed, in
order to quantify the real impact of household on transmission and on the effect of control policies.

2.1.2 Predicted outputs

In this Section we further explore each output and compare the behaviour of different models, in the base-
line assumption of random mixing. In the following sections, we explore deviations from this assumption.
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Average final size. As already mentioned in the main text, one of the most striking feature about the
final size in model AH is that increasing the difference in susceptibility between adults and children (by
keeping R0 constant) always decreases the final size. This result is already known for multitype models
(Miller, 2007; Andreasen, 2011; Andersson and Britton, 2000, Chapter 6), but the same behaviour seems
to occur for any fixed amount of within-household transmission. At the same time, shifting transmission
from outside to within the household (i.e. increasing paa while decreasing βg so that R0 remains constant)
increases the final size, with the negligible potential exception of extremely high values of paa. All graphs
in Supplementary Figure 5e-h appear in the main text, in Figures 1a, 1d, 1g and 2a. Given that for R0 = 2
the final size in absence of households and age stratification is roughly 80% of the population, there is
more room for it to decrease due to age differences than for it to increase due to higher within-household
transmission. This is indeed visible in Supplementary Figure 5e, by moving along the y-axis and x-axis.
Similar qualitative considerations apply to the rest of the graph: for example, at ψ = 1, z increases by
10% only over the whole range of paa, while at ψ = 4 it increases by almost 30%, simply because it has
more room to do so. The qualitative behaviour is similar for other values of R0 (Supplementary Figure
5a and 5i) and φ (not shown), although at low R0 (e.g. R0 = 1.5, Supplementary Figure 5a) the room
for decreasing is smaller than that for increasing, while at high R0 (e.g. R0 = 4, Supplementary Figure
5e) the opposite is true.

In terms of comparison, we have already observed in the main text that model A and model H always
predict, respectively, a lower and higher final size than model AH (Figures 1a, 1d and 1g of main text). As
a consequence, given that at R0 = 2 there is limited room for increasing the final size, model H appears
to fail in a larger region of the parameter space, compared to model A (Supplementary Figure 5d, h and
l). This could however be explained, at least partially, by model A having 4 free parameters (ψ, φ, θA

and βA) and therefore being naturally more flexible than the model H, which has only 2 parameters (βHh
and βHg ). In addition, model A has two parameters (ψ and φ) with the same value as in model AH and is
somewhat able to partially capture the household structure via re-estimation of the global assortativity.
On the contrary, the ability of model H to capture the age structure is almost unnoticeable, as it is limited
to the variation in the household size distribution due to age effects in changing vAH

h . Finally, it can be
noticed that, because the predictions of models A and H depart from those of model AH in opposite
directions, if both of them give accurate predictions, model U must also give accurate predictions and is
therefore preferred as simpler. As such, no green regions appear in the simplest model acceptance regions
plots in Supplementary Figure 5d, h and l.

Results are qualitatively and quantitatively very similar for other values of φ and are therefore not
shown.

Average daily peak incidence. The behaviour of the average daily peak incidence for R0 = 2 (Sup-
plementary Figure 5q-t) also appears in Figures 1b, 1e, 1h and 2b in the main text and, for other values,
of R0 in Supplementary Figure 5a-d and u-x. Its qualitative behaviour is essentially the same as that of
the final size: in model AH, the peak incidence decreases with increasing age differences and increases
with increasing within-household transmission (at fixed R0). It shows a similar (though milder) feature of
having more room to decrease due to age differences than to decrease due to the presence of households.
This is somewhat surprising, given that the peak incidence is not capped by any upper bound, as the final
size is by the total population. Analogously to the final size, this is less evident at low R0 (Supplementary
Figure 5m-p) and more pronounced at high R0 (Supplementary Figure 5u-x).

Again, in terms of comparison between models, models A and H predict, respectively, a lower and
higher peak incidence than that of model AH. For the same reasons presented before about the final size,
once more model A looks able to capture the “true” peak incidence of model AH on a larger region of the
parameter space than model H (especially for R0 = 4, Supplementary Figure 5u-x). As for the final size,
the fact that models A and H respectively under- and over-estimate the predictions of model AH implies
that, in theory, they cannot be both accurate without model U being accurate too. As such, no regions
of the parameters space are expected to be coloured in green in the simplest model acceptance regions
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plots for the peak incidence. However, unlike the final size z, the peak incidence π is computed using
individual-based stochastic simulations and therefore shows some (moderate) stochastic noise, which can
in certain cases (e.g. see Supplementary Figure 5p and, as a consequence, Supplementary Figure 7d and,
in the main text, Figure 3a, top-left panel) produce a small unexpected green area.

Results are very similar for other values of φ and are not shown.

Average time to peak incidence. As for the other outputs, the average time to reach the epidemic
incidence peak in model AH for R0 = 2 appears in Figures 1c, 1f, 1i and 2c in the main text, and for
other values of R0 in Supplementary Figure 6a-d and i-l. Note that the duration of a stochastic epidemic
is subject to much larger random fluctuations than the final size and peak incidence. As described in
the Supplementary Methods, Sections 1.2.8 and 1.5, to reduce the stochastic noise to a minimum, the
epidemic starts with n0 = 50 cases, thus essentially excluding the possibility of early epidemic extinction.
Furthermore, to reduce as much as possible the effects of system transients from the initial conditions to
the stable exponential growth window, we distribute our n0 as primary cases in different households and
divide them in adults and children according to the components of vAH

h . Despite all this watchfulness,
some evident stochastic noise is still present (see Supplementary Figure 6a-l, in particular Supplementary
Figure 6d). Note, however, that the attempt to reduce stochastic noise by synchronising the epidemics
at the peak and starting with n0 initial cases have the consequence of making variations in the predicted
epidemic time to peak very limited overall (within each of the groups a-c, e-g and i-k in Supplementary
Figure 6, as differences between groups are caused by the difference in R0), because most of the variability
is due to random delays in the early epidemic phase. The limited variation of average time to the peak
(i.e. excluding random delays) was already noted in House and Keeling (2008) for epidemics with the
same real-time growth rate r. Given that, at fixed R0, r varies very little (see Supplementary Methods,
Section 1.1.3, and Trapman et al., 2016), we unsurprisingly find similar results.

However, the qualitative behaviour of this output is very different from that of the other two. In
particular, the time to the peak t seems to always decrease when increasing either paa or ψ or both
(irrespective of φ or R0). Therefore, peak incidence and time to the peak are positively correlated when
increasing variation is susceptibility (constant paa) and negatively correlated when increasingly shifting
the infectivity in favour of within-household transmission.

In terms of comparison, unlike for the previous two outputs, both models A and H tend to overestimate
the time to the peak, suggesting that ignoring either form of heterogeneity results in an underestimation
of the how fast control policies need to be implemented to stop the spread. Notice also that this time
model H seems to perform better than model A at following the pattern of the output of model AH.
This is reasonable, as model H can increase the speed of the spread by increasing the within-household
infectivity, while model A has no tools to do so. However, as R0 increases, the limitations of model A are
more and more confined to a region of the parameters space corresponding to unrealistically large values
of the within-household infectivity paa.

Because the predictions of both simpler models depart from those of model AH in the same direction
(slower spread), it is not surprising the presence of an evident region where either model can be sufficiently
accurate but where model U fails.

Again, results are very similar for other values of φ, although for increasing φ some regions where
models A and AH are required for accurate predictions appear and grow in size (not shown).

Age-stratified average final size. In this study we have mostly focused on the overall epidemic final
size. However, it may be interesting to consider also the models’ predictions in terms of age-stratified
final size. We report this output in Supplementary Figure 6m-x, for models A and AH (model H does
not distinguish between adults and children, of course) and for different values of R0 .

As a general trend, model A underestimates the final size predictions in both age classes. As expected,
its accuracy decreases for increasing values of paa. Results are very similar for other values of φ.
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Comparisons. Supplementary Figure 7 presents the simplest model acceptance regions based on each
output separately and joins them (intersects them), so that the simpler models are rejected when at least
one output is not accurate enough. Supplementary Figure 7e-h is the same as Figure 2a-d of the main
text. Other values of R0 are shown in Supplementary Figure 7a-d and i-l. In order to show the impact of
φ, Supplementary Figure 7m-x reports the same output as in Figure 7a-l, but for φ = 2.

2.1.3 Other rejection thresholds

In the main text we have rejected a simple model when its output is more than 5% different from that of
model AH. Here we explore other possible values for this rejection threshold ε.

In Supplementary Figure 8 we explore the simplest models acceptance regions for φ = 1 and R0 ranging
from 1.5 to 4, but for rejection thresholds ε = 1% and ε = 10% (first and second row, respectively).
Results should be compared to those obtained with the 5% tolerance used in Supplementary Figure 7a-l.
For ε =10%, it can be easily noted how the approximation of all simpler models improve for large R0:
in particular, the strongly non-linear dependence of the final size z on R0 causes all models to give very
similar predictions for it in a large region of the parameters space (the blue area of Supplementary Figure
8i).

Apart from accepting model U on a wider region of the parameter space, the figures for ε =10%
also reveal another interesting observation. We have already noticed how model A is in general better
able than model H to follow the qualitative predictions of model AH (see Figure 1 in the main text).
This aspect becomes even more evident for ε = 10% (Supplementary Figure 8m-x) when, especially for
increasing R0, the region where model A is the simplest (light blue) becomes much wider while the one
where model H is the simplest (yellow) shrinks until disappearing. All results are very similar when φ > 1
(not shown).

Finally, in Supplementary Figure 9 we summarise the overall simplest model acceptance regions plots
for ε =1%, 5% and 10%. In line with what just said, Supplementary Figure 9 suggests how the presence
of households become much less relevant for higher values of R0, while the age stratification remains
important in vast areas of the parameter space. This is true despite the random mixing assumption.
In the next section we show how this conclusion is accentuated even further in the case of non-random
mixing.

Finally, note how the border between the light blue and red regions, indicating where households are
needed in addition to age classes, roughly follows the SAR isoclines, though for different SAR values at
different values of R0 and of the threshold ε.

2.2 Numerical results with realistic UK contact patterns

In this section we illustrate how most of the results shown before change if the realistic UK contact
patterns are assumed (see Supplementary Methods, Section 1.6.3).

2.2.1 Early epidemic indicators and mapped parameters

When mixing does not occur at random, all early epidemic indicators and mapped parameters depend
on all other parameters. We report in Supplementary Figure 11A and B the child components vc and vch
of the vectors vAH and vAH

h , respectively. The striking difference with Supplementary Figure 4A and B
(note the change in the colour scale) is how much more focussed on children the spread is, and this is a
direct consequence of the fact that children have more contacts than adults on average, and that those
contacts are more likely to be with other children (assortative mixing).

This striking difference has apparently only mild repercussions on the household SAR (Supplementary
Table 12 and Supplementary Figure 11C), but changes noticeably the average size of an infected household
(compare the values of χv in Supplementary Tables 10 and 12), because children are preferentially infected
and they tend to live in larger households. The fraction of total transmission that occurs in households
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(compare Supplementary Tables 11 and 13, or Supplementary Figure 4D and 11D), however, seems to
be only moderately affected, leading again to the conclusion that, also with UK contact patterns, for
parameters of pandemic influenza in the UK (House et al., 2012), roughly a third of total transmission
occurs in households.

With UK contact patterns, the assortativity of children is already quite high, so the apparent value
obtained when the household structure is removed seems to be consistently lower than its original value for
different values of R0 and φ (Supplementary Figure 10B), unlike what can be observed for random mixing
(Supplementary Figure 10A). Again, a better understanding of this phenomenon and its implications
needs to be gained.

2.2.2 Predicted outputs

In Supplementary Figures 12 and 13 we plot the three main outputs and the age-stratified final size for
models AH, A and H, together with the simplest model acceptance regions, when adults and children mix
according to UK contact patterns. The values of R0 explored are 1.5, 2 and 4, φ = 1 and ε = 5%.

The plots for the final size z and the peak incidence π are qualitatively similar to those shown in Figure
1 in the main text, where random mixing is assumed (though the colour scale are different, and are kept
fixed between different R0 values in Supplementary Figures 12 and 13 to facilitate the comparison).
It is now striking how far the predictions of model H are from those of model AH. In particular, for
R0 = 2 (Supplementary Figure 12e-h) almost nowhere model AH achieves a final size larger than the
80% obtained under pure random mixing (U model). Therefore, model H, which cannot predict anything
smaller than 80% leads to an almost flat surface in Supplementary Figure 12g. The same observations
hold for the peak incidence (Supplementary Figure 12s). In terms of time to the peak, instead, the
presence of heterogeneous mixing tends in general to make the spread faster, in particular for large values
of ψ even when paa is small (compare Supplementary Figure 13e and Figure 1c of the main text).

In terms of age-stratified final size, model A still underestimates predictions for both age classes,
especially for large paa, though the discrepancy is minimal.

Supplementary Figure 14 now reports the simplest model acceptance regions based on each output
and on all output together for an ε = 5% rejection threshold and R0 = 1.5, 2 and 4, and φ = 1 and 2.
The patterns appear to be more complex than in the case of random mixing, but they overall tend to
reject model H in most cases and require an age stratification almost everywhere, especially for smaller
R0 or larger values of φ.

Further support in this direction comes from Supplementary Figure 15, where thresholds of 1% and
10% are used (φ = 1) and from Supplementary Figure 16, where the overall simplest models acceptance
regions are plotted for different values of R0, φ, ψ and paa, and for rejection thresholds of ε = 1% (A) 5%
(B), and 10% (C). Apart from the absolute need to have at least the age structure when the tolerance
is low (ε = 1%), it is striking how, even for high tolerance (ε = 10%) the age structure is almost always
necessary.

2.3 Further sensitivity analysis

2.3.1 Intermediate contact patterns

The difference between the simplest model acceptance region plots of Figures 3A and 3B of main text
is striking because UK contact patterns are very different from random ones. To illustrate the gradual
transition between these two extremes, we plot in Supplementary Figure 17 the simplest model acceptance
region plots for intermediate values of the assortativity (θg = 0.4 and 0.5, between the 0.2273 of random
mixing and the 0.58 of the assortative mixing measured in the UK) and for equal or increased number
of contacts children make compared to adults: γ (= γg = γh) = 1 or γ = 0.75 (children have 33% more
contacts than adults in all environments). As expected, Supplementary Figure 17 shows a gradually
increasing importance of the presence of an age structure compared to the household structure.
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2.3.2 Accuracy of model mapping: fixed R0 versus fixed r

As mentioned in Section 1.1.3, the real-time growth rate r is in general the most readily available quantity
early on in an epidemic. Therefore, a natural choice would be to match all models to this quantity. In
Figure 18 we show the results when the mapping is performed by keeping fixed r.

Although fast machine precision results exist for calculating r for households models when the disease
progression occurs by transitioning through a series of compartments (Pellis et al., 2010), this is not
the case for the current model, where a fixed (deterministic) time-since-infection (Γ-shaped) infectivity
profile is used. In this case, no exact result is available. Approximate methods for computing r in
households models exist (Fraser, 2007; Pellis et al., 2010) but matching the same approximate r is exactly
the same as matching R0 as we have done here (see Ball et al., 2016, and Supplementary Methods,
Section 1.1.3). Therefore, we rely on Monte Carlo methods to compute r approximately, as described in
the Supplementary Methods, Section 1.2.9, for model AH, and Supplementary Methods, Section 1.4, and
Appendix G of Ball et al. (2016) for model H.

Given the computational cost, only 100 simulated within-household epidemics for each household
composition and either type of initial infective are performed for each parameter combination. Results,
therefore, are unavoidably inaccurate and present a significant level of noise (see Supplementary Figure
18). Therefore, despite r being a more intuitive parameter to keep fixed between models, the noisy output
and the computational cost are both valid reasons supporting the choice made here of performing the
model comparison at fixed R0.

Broadly, Supplementary Figure 18 confirms the intuition developed in the comparison at fixed R0.
However, because keeping fixed R0 is the same as keeping fixed the approximation of r of Fraser (2007) and
Pellis et al. (2010) and it is known that such approximation is less accurate when household transmission
is strong (see Ball et al., 2016), the discrepancy between the results of Figure 18 and Figures 9 and 16
increases for large paa. The three values or r investigated (r =0.14552, 0.25282 and 0.52588) correspond,
respectively, to R0 = 1.5, 2 and 4 at paa = 0, i.e. when there is no household transmission.

The light-shaded red square visible on the top-right panel for R0 = 1.5, ψ = 1 and random mixing
denotes a parameter combination for which the mapping procedure fails as no value of the assortativity
θA can be found (see Supplementary Methods, Section 1.3). This case occurs more commonly in Supple-
mentary Figures 19-23, so it is discussed more extensively in Supplementary Methods, Sections 2.3.3 and
2.3.4.

2.3.3 Children less susceptible and/or infectious than adults

Throughout this study, we have focussed on children being more susceptible and/or more infectious than
adults, because this seemed to guarantee that a valid value for the assortativity θA of model A could
be found. As explained in the Supplementary Methods, Section 1.3, this is not strictly true, as the
main problem arises for φψ = γ under random mixing and when ψ and paa become large enough (see
Supplementary Figures 20 and 22A, top-left panel). However, the situation is significantly more complex
when children are assumed to be less susceptible and/or less infectious than adults. In Supplementary
Figure 19 we allow ψ to vary between 0.25 (children a quarter as susceptible as adults) to ψ = 4 – note
the log2 scale on the y-axes – and we consider φ = 0.5 (children half as infectious as adults), 1 and 2.
The colours are the same as in all other figures, but the lighter-shaded areas identify the regions of the
parameter space where no value of θA could be found. This implies that, for those parameter values,
model A was unable to reflect the observed stratified incidence and was therefore discarded as inaccurate.
Therefore, no lighter shaded area appears in regions coloured in light blue (nor in those in green). Note
however that it is possible to have parameters to the right of the thick line (i.e. where households are
needed to reproduce the observed stratified incidence) for which the simplest unstructured model U (blue
region) is sufficient for accurate predictions. This is the case because model U is not required to match
any other condition but the correct value of R0.
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Note the visible horizontal spikes occurring when ψφ = γ (see Supplementary Methods, Section 1.3),
which should but might sometimes not appear to extend throughout all values of paa only because of the
limited (paa, ψ)-grid resolution. However, despite such spikes, the border between the light blue and the
red areas seem in general to follow the SAR isoclines throughout the whole range of values of ψ explored,
thus suggesting the results of these analysis somewhat extend also to the case of children less susceptible
and/or infectious than adults. The problem of matching the assortativity does unavoidably complicate
the picture but, within the resolution of Supplementary Figure 19, regions to the right of the thick line
but left of the SAR isocline separating red and light blue regions seem to consistently be (shaded) dark
blue areas. Therefore, Supplementary Figure 19 seems to suggest that one can still adopt the following
approach:

1. Follow the rule of thumb (Results section of main text and Supplementary Discussion, Section 2.4)
to decide, based on measures of SAR, whether households are needed. If yes, include households
and age.

2. If not, see whether model A can reproduce the observed stratified incidence. If yes, use model A.

3. If not, use model U.

2.3.4 Other populations

Sierra Leone. The population of Sierra Leone is dramatically different from that of the UK, in par-
ticularly because of the very large fraction of children. Its household composition structure (Statistics
Sierra Leone – SSL and ICF Macro, 2009; see Supplementary Methods, Section 1.6.2) is described in
Supplementary Table 4 and the summary population distributions are reported in Supplementary Table
5.

The mapped value for the assortativity of model A is plotted in Supplementary Figure 20 for random
(A) and assortative (B) mixing. Note that a large household size and fraction of children implies that
outputs are more sensible to variations in paa, which therefore is plotted only up to 0.475. Furthermore,
to facilitate the comparison with Supplementary Figure 10 for Great Britain (as well as Supplementary
Figure 22 below for South Africa) the colour axis has been kept the same in all these plots. Note also the
presence of a white region, for very large paa and ψ (top-right of Supplementary Figure 20A), where no
valid mapped value for the assortativity can be found.

Given the illustrative purpose of the analysis to other populations, as well as the lack of available
data, assortative mixing is assumed to follow the same contact patterns as for the UK. Note that this
is a significantly less strong a requirement than for Great Britain: because the fraction of children is
much larger in Sierra Leone, a larger assortativity is associated to random mixing (θg = Fc = 53.81%).
Requiring that 58% of contacts of a child occurs with other children still implies that mixing that is
more assortative than random, but the difference is almost negligible compared to the case of the Great
Britain. For this reason, an assortativity of 70% has also been explored, but results are similar and hence
not shown.

Qualitatively, although under random mixing (Supplementary Figure 20A) the household structure
can impose both assortative and disassortative mixing as in the case of Great Britain, an increase in
the apparent assortativity occurs very rarely (only for φ = 1 and some values of ψ < 1.5). For al-
ready assortative mixing (Supplementary Figure 20B) the household structure only reduces the apparent
assortativity.

Supplementary Figure 21 shows the overall simplest model acceptance region plots for Sierra Leone,
which leads to the same qualitative conclusions as for Great Britain and thus suggests the results of our
analysis are generally applicable to very diverse populations and social structures. The region where the
mapping to model A fails, i.e. the region characterised by a lighter colour shading, is significantly larger
that the region where no valid assortativity 0 < θA < 1 could be found, as some values of θA, though
valid, lead to a negative, and hence unviable, adult-to-adult component of the NGM (kAaa < 0).
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South Africa. The household composition structure of South Africa (Department of Health/South
Africa and Macro International, 2002; see Supplementary Methods, Section 1.6.2) is described in Supple-
mentary Table 6 and summary population distributions are reported in Supplementary Table 7.

As for Sierra Leone, we monitor the mapped assortativity of model A in Supplementary Figure 22 for
random mixing (A) and UK-like mixing patterns (B). The within-household infectivity paa goes only up
to 0.66. Qualitative conclusions are the same as before, though quantitative differences are highlighted
by the use of the same scale as in Supplementary Figures 10 and 20. Note again the presence of a region
where no valid assortativity θA could be found (top right of Supplementary Figure 22A).

Supplementary Figure 23 shows the overall simplest model acceptance region, for random (A) and
UK-like mixing patterns (B), and leads once more to the same conclusions as for the population of Great
Britain. Note again a region where the mapping to model A fails because, despite a valid assortativity
being found, it leads to negative values for kAaa.

2.4 Rule of thumb

As visible from Figure 3B in the main text, the border between the parameter regions where households
are (red) and are not (light blue) needed for predictions within 5% relative accuracy strongly resembles
the contour lines of the SAR for the entire range of values of ψ explored. Different contour lines appear to
be relevant for different values of R0 but variations in φ seem to be negligible. Somewhat surprisingly, also
the choice of whether random mixing or UK-like contact patterns are assumed (compare Supplementary
Figure 9 and Supplementary Figure 16) seems to bear negligible influence on the relationship between
R0 and the SAR above which households are important. Note however that, if a region where the
age structure is not needed for accurate predictions is present (dark blue and yellow), often model U
can provide accurate results even to the right of the thick line in Figure 9, because the contribution of
households and that of the age structure cancel each other out. In other words, in drawing the boundary
discriminating when households are important or not we have only focussed on whether the difference in
predictions from model AH and A is more than ε, irrespective of whether then model U is still selected
as the simplest model choice.

We were not able to find a relationship between parameters and model output suggesting when the age
structure was necessary for accurate predictions that was as simple as that for the household structure.
However, because for realistic UK-like contact patterns the presence of the age structure was generally
necessary for accurate predictions, and because age-stratified models are generally mathematically simpler
to study than households models, we deemed providing such a criterion less relevant in the first instance.

To illustrate the strong relationship between R0 and the level of SAR above which households are
important, we constructed Figure 4 in the main text as follows. First, we generated the data points
according to the following algorithm.

1. We fixed the population structure (Great Britain, Sierra Leone, South Africa) and the global assor-
tativity θg (random – which is population dependent – or UK-like assortative, i.e. θg = 0.58).

2. For every value of R0 ∈ {1.1, 1.3, 1.5, 1.7, 2, 2.3, 2.7, 3.2, 4} and φ ∈ {1, 1.5, 2}, we generated the
data necessary for any (paa, ψ) plot in this study, in particular the value of all outputs (final size z,
peak incidence π and time to the peak t) for model AH and for model A, after finding θA from the
mapping procedure described in the Supplementary Methods, Section 1.3. If no assortativity was
found, the outputs of model A were always considered inaccurate, i.e. more than ε away from those
predicted by model AH (hence why the bold line follows the light-shaded area in Supplementary
Figure 19).

3. The minimum relative error between output predictions of models AH and A was then calculated
as

merr = min

{∣∣ zAH − zA
∣∣

zAH
,

∣∣πAH − πA
∣∣

πAH
,

∣∣ tAH − tA
∣∣

tAH

}
.
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4. An ε-contour line of merr was then generated using the contourc function in Matlab and the
contour matrix was stored. Such a matrix contains the (paa, ψ) points that are joined together to
plot the contour line.

5. The contour matrix was “cleaned” as follows. In the presence of noisy output, some red squares
might appear inside the light blue area and fully detached from the main red region (see e.g. top-
right of Figure 3B of main text, as well as many others). The contour matrix then contains different
components, one for every (if any) disconnected small red region inside the light blue region (gener-
ating a small, closed contour line visible in many plots) and a main component separating the entire
red and light blue regions (long, open line spanning the entire range of ψ). The former components
were discarded and only the latter was retained.

6. For every point of the “cleaned” contour line, the SAR was computed and its values plotted against
R0.

Second, we plotted the regression lines as follows. It is evident that, although a straight line fits the
data well, it is inaccurate around R0 = 1 (where a threshold transition is expected) and for high R0

because of saturation effects. Furthermore, the range of R0 where a linear fit was deemed appropriate,
inevitably depends on the threshold ε chosen. Therefore we ran a preliminary analysis (see Supplementary
Figure 24 for the case of ε = 5%, other values were explored similarly) to visually asses an appropriate
range of at least three consecutive R0 values to be used in the linear fit. More specifically, for both
random (Supplementary Figure 24A) and UK contact patterns (Supplementary Figure 24B), we fitted a
linear regression model to all data points corresponding to a fixed φ and a fixed range of ψ values (each of
the nine subpanels in Supplementary Figure 24A and B), for a range of R0 values starting from the one
denoting each row and terminating on the one denoting each column (e.g. the top-left cell corresponds
to R0 values of 1.1, 1.3 and 1.5). The regression coefficient and intercept are reported in each cell and
the adjusted R2 is visually expressed by the cell colour. From Supplementary Figure 24 and similar ones
corresponding to ε = 1% and ε = 10% (not shown) we decided empirically that a suitable range of R0

values for a linear fit for all populations, with both random mixing and UK-like contact patterns was:

• for ε = 1%: R0 ∈ [1.3, 2.7];

• for ε = 5%: R0 ∈ [1.3, 3.2];

• for ε = 10%: R0 ∈ [1.3, 2.5].

Note that the spread of the distribution of data points for each value of R0 is a result of multiple factors:

• The lack of smoothness of the contour line visible in each plot: this is fundamentally due to the
coarseness of the (paa, ψ)-grid resolution, which can be easily improved at increased computational
cost;

• The fact that data points coming from numerous values of φ and ψ are pooled together: this is also
visible in the slight variations in the goodness of fit in each of the nine sub-panels in Supplementary
Figure 24A and B.

The latter reason motivated keeping track of which values of φ and ψ are associated with each data point:
this more careful analysis revealed that most extreme values in the distribution of data points correspond
to joint large values of φ and ψ, which are biologically less realistic. Therefore, we distinguished data
points for which φψ ≤ 3 (more realistic, plotted in black) and the others (grey), and we separately fitted
a linear regression model to each of these subgroups (the dashed lines in Figure 4 in the main text and
in Supplementary Figure 25, each fitting only the data points of the corresponding colour, for the values
of R0 specified before).
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In devising an empirically reasonable rule of thumb, i.e. in proposing some coefficients for the thick
line in Figure 4 in the main text and in Supplementary Figure 25, we aimed at a good fit, with the same
line for the same population, of both the data points relative to random mixing and those relative to
UK-like contact patterns with assortative mixing (top and bottom lines, respectively, in Supplementary
Figure 25A, B and C). More weight has been given to the more realistic UK-like assortative mixing and
to the black data points (φψ ≤ 3), as biologically more plausible. This is evident, as the thick line in
Supplementary Figure 25A, B and C is closer to the black dashed line (often overlapping it) than the grey
dashed line.

It is remarkable how good the fit of this rule of thumb is, considering the amount of complexity
captured, as a single line seem to describe well the threshold above which household are needed for
accurate predictions for a wide range of R0 values, irrespective of the values of φ, ψ (and hence paa) and
any degree of variation in contact rates between adults and children and in assortativity (at least between
random mixing and UK-like contact patterns). Furthermore, with suitable adjustments and taking into
account threshold (R0 close to 1) and saturation (large R0) effects, a linear relationship broadly extends
to very different population structures and different accuracy thresholds.

Unavoidably, there was some degree of variability in choosing the coefficients of the rule of thumb,
and slightly different choices would have looked equally satisfactory. In particular, it became quickly
apparent that, for every accuracy threshold ε, the coefficients of the rule of thumb could roughly be
joined by a straight line, so the final choice in the value of such coefficients also reflected an attempt
to show a perfectly clear linear relationship between their values for different populations, as visible in
Supplementary Figure 25D.

In an attempt to extrapolate our results even further, we highlight the fact that, in each straight line
in Supplementary Figure 25D, the coefficients relative to South Africa fit at 1/4 of the distance between
Sierra Leone and Great Britain. This is interesting as South Africa has a fraction of children that also
roughly fits at 1/4 of the distance between that of Sierra Leone and that of Great Britain. Therefore we
speculate that, when a new population is considered, one could compute the fraction of the children, find
its position in between that of the Great Britain and Sierra Leone, and choose the coefficients of the new
rule of thumb that sit in the same position along the line plotted in Supplementary Figure 25D for each
accuracy threshold. Although untested in this work, this would provide a simple extrapolation rule that
could guide model design for any population of interest.
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3 Supplementary Tables

Supplementary Table 1: Household composition of Great Britain. The table reports the probability hna,nc
that a randomly selected household has na adults and nc children, expressed in %. Zero values are not
shown.

Children

0 1 2 3 4 5 6 7 8+

Adults

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02
1 30.28 3.01 2.03 0.70 0.18 0.06 0.01 0.02 36.29
2 31.06 6.91 8.65 2.89 0.74 0.13 0.05 50.43
3 6.58 1.83 0.80 0.26 0.06 0.03 9.56
4 2.14 0.54 0.18 0.05 0.03 2.95
5 0.46 0.09 0.03 0.02 0.60
6 0.08 0.02 0.01 0.11
7 0.02 0.01 0.02
8+ 0.01 0.01

70.62 12.40 11.71 3.93 1.02 0.22 0.06 0.02 0.01 100.00

Supplementary Table 2: Household structure of Great Britain. Relevant statistics are reported with their
symbols and means.

Distribution Symbol
Number of household members

Mean
1 2 3 4 5 6 7 8+

Size distribution of a randomly selected household hn 30.28 34.07 15.51 13.32 4.88 1.41 0.33 0.20 2.35

Size distribution of the house of a randomly se-
lected individual

πn 12.89 29.00 19.81 22.67 10.37 3.59 0.97 0.69 3.07

Size distribution of the house of a randomly se-
lected individual, conditional on having at least 2
members

h̃n – 48.87 22.25 19.11 6.99 2.02 0.47 0.29 2.94

Size distribution of the household of a randomly
selected adult

πan 16.68 35.87 19.59 17.65 7.06 2.18 0.58 0.39 2.73

Size distribution of the household of a randomly
selected child

πcn 0.01 5.64 20.54 39.77 21.63 8.38 2.30 1.73 4.20

Supplementary Table 3: Household composition of Great Britain by individual. The table reports the
probabilities πana,nc (A) and πcna,nc (B) that the household of a randomly selected adults (A) or child (B)
has na adults and nc children, expressed in %. Zero values are not shown.

A)
Children

0 1 2 3 4 5 6 7 8+

A
d
u
lt
s

0
1 16.68 1.66 1.12 0.39 0.10 0.03 0.01 0.01 19.99
2 34.22 7.61 9.53 3.19 0.82 0.15 0.05 55.55
3 10.87 3.03 1.32 0.42 0.11 0.06 15.80
4 4.71 1.19 0.41 0.12 0.07 6.49
5 1.27 0.24 0.09 0.07 1.66
6 0.26 0.05 0.05 0.36
7 0.07 0.02 0.09
8+ 0.05 0.05

68.12 13.79 12.51 4.18 1.10 0.23 0.06 0.01 100.00

B)
Children

0 1 2 3 4 5 6 7 8+

A
d
u
lt
s

0 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.14 0.18
1 5.63 7.60 3.95 1.37 0.53 0.13 0.25 19.46
2 12.93 32.39 16.25 5.56 1.24 0.56 68.93
3 3.43 3.00 1.43 0.48 0.33 8.67
4 1.01 0.69 0.30 0.25 2.24
5 0.16 0.12 0.14 0.42
6 0.03 0.06 0.08
7 0.01 0.01
8+

23.21 43.87 22.08 7.67 2.10 0.69 0.25 0.14 100.00
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Supplementary Table 4: Household composition of Sierra Leone: probability hna,nc that a randomly
selected household has na adults and nc children, expressed in %. Zero values are not shown.

Children

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Adults

0.11 0.04 0.01 0.02 0.19
1 3.88 1.66 2.22 1.79 1.14 0.64 0.16 0.19 0.02 11.71
2 3.48 6.57 9.67 9.31 7.33 3.89 1.60 0.83 0.43 0.17 0.05 0.01 0.03 43.37
3 1.53 2.32 4.23 4.64 3.55 2.55 1.58 1.29 0.47 0.25 0.13 0.20 0.12 0.04 22.89
4 0.60 1.46 2.47 2.40 1.43 1.70 1.25 0.62 0.49 0.22 0.17 0.07 0.04 0.02 12.93
5 0.18 0.51 0.68 0.72 0.71 0.75 0.41 0.31 0.27 0.17 0.10 0.09 0.01 4.90
6 0.13 0.22 0.39 0.33 0.55 0.22 0.12 0.18 0.10 0.06 0.12 0.05 2.46
7 0.09 0.06 0.07 0.19 0.08 0.08 0.10 0.04 0.04 0.04 0.09 0.88
8 0.03 0.04 0.05 0.08 0.04 0.02 0.03 0.01 0.08 0.38
9 0.01 0.01 0.06 0.02 0.02 0.02 0.03 0.17
10 0.03 0.01 0.01 0.04 0.09
11 0.02 0.02
12 0.00
13 0.01 0.01

9.90 12.96 19.83 19.52 14.90 9.92 5.30 3.51 1.85 0.98 0.67 0.41 0.16 0.06 0.00 0.03 100.00

Supplementary Table 5: Household structure of Sierra Leone: some statistics, with symbol and mean.

Distribution Symbol
Number of household members

Mean
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Size distribution of a randomly se-
lected household

hn 0.04 0.05 0.10 0.14 0.16 0.16 0.11 0.07 0.05 0.05 0.02 0.01 0.01 0.01 0.00 0.00 0.00 5.85

Size distribution of the house of a
randomly selected individual

πn 0.01 0.02 0.05 0.10 0.14 0.16 0.13 0.10 0.08 0.08 0.04 0.03 0.02 0.02 0.01 0.01 0.01 7.24

Size distribution of the house of a
randomly selected individual, condi-
tional on having at least 2 members

h̃n – 0.02 0.05 0.10 0.14 0.16 0.13 0.10 0.08 0.08 0.04 0.03 0.02 0.02 0.01 0.01 0.01 7.29

Size distribution of the household of
a randomly selected adult

πa
n 0.01 0.03 0.07 0.11 0.15 0.16 0.12 0.09 0.07 0.07 0.03 0.03 0.02 0.01 0.01 0.01 0.01 6.79

Size distribution of the household of
a randomly selected child

πc
n 0.00 0.01 0.04 0.09 0.13 0.16 0.14 0.10 0.09 0.08 0.04 0.03 0.02 0.02 0.01 0.01 0.01 7.63

Supplementary Table 6: Household composition of South Africa: probability hna,nc that a randomly
selected household has na adults and nc children, expressed in %. Zero values are not shown.

Children

0 1 2 3 4 5 6 7 8 9 10 11 12

Adults

0 0.23 0.13 0.10 0.12 0.02 0.02 0.03 0.01 0.65
1 11.47 3.67 4.00 2.75 1.93 0.96 0.49 0.18 0.11 0.05 0.04 25.63
2 11.30 8.06 9.16 5.82 3.38 1.83 0.70 0.36 0.15 0.04 0.03 0.01 0.01 40.85
3 3.86 3.27 3.72 2.65 1.93 0.96 0.44 0.28 0.14 0.13 0.10 0.01 17.50
4 1.61 1.72 1.83 1.46 1.04 0.57 0.32 0.29 0.16 0.03 0.03 0.01 0.01 9.06
5 0.64 0.78 0.65 0.70 0.55 0.27 0.25 0.17 0.04 0.05 0.01 4.10
6 0.21 0.09 0.26 0.27 0.22 0.22 0.08 0.05 0.05 0.02 0.02 1.48
7 0.01 0.05 0.12 0.05 0.09 0.07 0.03 0.02 0.01 0.01 0.46
8 0.01 0.02 0.02 0.02 0.03 0.07 0.02 0.17
9 0.01 0.02 0.00 0.02 0.04
10 0.02 0.01 0.01 0.03
11 0.01 0.01 0.02

29.13 17.89 19.87 13.82 9.31 4.93 2.42 1.40 0.66 0.32 0.22 0.03 0.02 100.00

Supplementary Table 7: Household structure of South Africa: some statistics, with symbol and mean.

Distribution Symbol
Number of household members

Mean
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Size distribution of a randomly se-
lected household

hn 0.12 0.15 0.16 0.17 0.14 0.10 0.06 0.04 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 4.27

Size distribution of the house of a
randomly selected individual

πn 0.03 0.07 0.11 0.16 0.16 0.14 0.11 0.07 0.05 0.03 0.03 0.02 0.01 0.01 0.00 0.00 0.00 5.72

Size distribution of the house of a
randomly selected individual, condi-
tional on having at least 2 members

h̃n – 0.07 0.12 0.16 0.17 0.14 0.11 0.08 0.05 0.03 0.03 0.02 0.01 0.01 0.00 0.00 0.00 5.86

Size distribution of the household of
a randomly selected adult

πa
n 0.05 0.11 0.14 0.16 0.15 0.12 0.09 0.06 0.04 0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00 5.17

Size distribution of the household of
a randomly selected child

πc
n 0.00 0.02 0.08 0.15 0.18 0.16 0.13 0.09 0.06 0.04 0.04 0.02 0.01 0.01 0.00 0.00 0.00 6.37
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Supplementary Table 8: Parameter estimates for UK contact patterns. The values reported are obtained
from the raw data of the POLYMOD study (Mossong et al., 2008). The global assortativity θg is defined
as the fraction of all the contacts a child has which is made with other children. The within-household as-
sortativity depends on the household composition, so the estimate of mean within-household assortativity
θh is not used: instead random mixing is assumed in each household.

Number
of contacts

From a to From c to
Assortativity Symbol

a c any a c any

household 1449 764 2213 980 735 1715 36.2 % (θh)

global 3893 779 4672 1320 2433 3753 57.9 % θg

overall 5342 1543 6885 2300 3168 5468 50.9 %

Average
number

of contacts

From a to From c to
Ratios Symbol

a c any a c any

household 2.33 1.23 3.56 2.63 1.97 4.6 0.78 γh

global 6.27 1.25 7.52 3.54 6.52 10.06 0.75 γg

overall 8.6 2.48 11.09 6.17 8.49 14.66 0.76 γA

Supplementary Table 9: Summary of parameter values. Model parameters are described, with their
notation and value at baseline, and the range of other values explored (GB: Great Britain, SL: Sierra
Leone, SA: South Africa).

Parameter Symbol Baseline
value

Main values explored Further exploration

Basic reproduction number R0 2 1.5, 2, 4 1.1-4 (Section 2.4)

Relative infectivity of chil-
dren VS adults

φ 1 1, 1.5, 2 0.5, 1, 2 (Section 2.3.3)

Relative susceptibility of chil-
dren VS adults

ψ 1-4 1-4 0.25-4 (Section 2.3.3)

Within-household adult-to-
adult transmission probabil-
ity (Section 1.2.3)

paa 0-0.95
GB: 0-0.95
SL: 0-0.475
SA: 0-0.63

Assortativity of children in
the community (fraction of
all contacts a child has which
is made with other children;
Section 1.2.2)

θg 0.2273
Random: 0.2273 (GB), 0.5381 (SL), 0.4592 (SA)
Assortative: 0.58 (all populations)

GB only: 0.4, 0.5
(Section 2.3.1)
SL only: 0.7
(not shown)

Ratio of average number of
contacts an adult and a child
have per day

γ
(= γh
= γg)

1 Random: 1
Assorative: 0.75

Tolerance for relative accu-
racy of simpler models’ pre-
dictions

ε 5% 1%, 10%
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Supplementary Table 10: Household secondary attack rate (SAR) under random mixing. The SAR is
reported, expressed in %, for various values of φ, ψ and paa, and is accompanied by the expected size χv

of a household infected during the stable exponential growth window. In the random mixing scenario,
there is no dependence on R0.

ψ φ = 1 χv

4 0 11 24 38 51 62 73 81 88 92 3.53
3.5 0 11 23 36 49 61 72 80 87 91 3.48
3 0 10 22 34 47 59 70 79 86 90 3.42
2.5 0 9 20 32 44 57 68 78 85 90 3.36
2 0 9 19 30 42 54 66 76 84 89 3.28
1.5 0 8 17 27 39 50 62 73 82 87 3.18
1 0 8 16 25 35 46 57 69 79 86 3.07

φ = 1.5 χv

4 0 15 31 46 59 70 78 85 90 92 3.53
3.5 0 14 29 44 57 68 77 84 89 91 3.48
3 0 12 27 41 55 67 76 83 88 91 3.42
2.5 0 11 24 38 52 64 74 82 87 90 3.36
2 0 10 22 35 48 61 72 80 86 89 3.28
1.5 0 9 20 31 44 56 68 77 84 88 3.18
1 0 8 18 28 39 50 62 73 81 86 3.07

φ = 2 χv

4 0 18 36 52 64 74 81 87 90 92 3.53
3.5 0 16 34 50 63 73 80 86 90 91 3.48
3 0 15 31 47 60 71 79 85 89 91 3.42
2.5 0 13 28 43 57 68 77 84 88 90 3.36
2 0 12 25 39 53 65 75 82 87 89 3.28
1.5 0 10 22 35 48 60 71 79 85 88 3.18
1 0 9 19 30 42 53 65 74 82 86 3.07

paa 0 .1 .2 .3 .4 .5 .6 .7 .8 .9

Supplementary Table 11: Fraction of within-household transmission under random mixing. The average
fraction Fh of total transmission that occurs in households, expressed as %, is reported for various values
of R0, φ, ψ and paa.

ψ R0 = 1.5 – φ = 1 R0 = 2 – φ = 1 R0 = 4 – φ = 1

4 0 16 28 38 45 51 55 58 60 62 0 12 22 30 37 42 46 49 52 54 0 6 12 17 21 25 28 31 34 36
3.5 0 14 27 36 44 49 54 57 59 61 0 11 21 29 35 41 45 48 51 53 0 6 11 16 20 24 27 30 33 36
3 0 13 25 34 42 48 53 56 59 60 0 10 19 27 34 39 44 48 50 53 0 5 10 15 19 23 26 29 32 35
2.5 0 12 23 32 40 46 51 55 58 60 0 9 18 25 32 38 42 46 50 52 0 5 9 14 18 21 25 28 31 34
2 0 11 21 30 37 44 49 53 57 59 0 8 16 23 30 35 41 45 48 51 0 4 8 12 16 20 24 27 30 33
1.5 0 9 18 27 34 41 47 51 55 58 0 7 14 21 27 33 38 43 47 50 0 4 7 11 15 18 22 25 29 32
1 0 8 16 24 30 37 43 48 52 56 0 6 12 18 24 29 35 40 44 48 0 3 6 10 13 16 20 23 27 30

R0 = 1.5 – φ = 1.5 R0 = 2 – φ = 1.5 R0 = 4 – φ = 1.5

4 0 20 34 44 50 53 56 58 60 60 0 15 27 35 41 45 48 50 52 53 0 8 15 20 24 27 30 32 34 36
3.5 0 19 32 42 48 53 56 58 59 60 0 14 25 34 40 44 47 50 52 53 0 7 14 19 23 27 30 32 34 36
3 0 17 30 40 47 52 55 57 59 60 0 13 24 32 38 43 47 49 51 53 0 7 13 18 22 26 29 31 33 35
2.5 0 15 28 38 45 50 54 57 59 60 0 12 22 30 36 42 45 48 51 52 0 6 11 16 21 24 28 31 33 35
2 0 13 25 35 42 48 53 56 58 59 0 10 19 27 34 40 44 47 50 52 0 5 10 15 19 23 26 29 32 34
1.5 0 11 22 31 39 45 50 54 57 59 0 9 17 24 31 37 42 46 49 51 0 4 9 13 17 21 24 28 31 34
1 0 9 18 27 34 41 47 51 55 58 0 7 14 21 27 33 38 43 47 50 0 4 7 11 15 18 22 25 29 32

R0 = 1.5 – φ = 2 R0 = 2 – φ = 2 R0 = 4 – φ = 2

4 0 24 39 47 52 55 57 58 59 60 0 19 31 38 43 46 49 50 51 52 0 10 17 22 26 29 31 33 34 35
3.5 0 22 37 45 51 54 56 58 59 60 0 17 29 37 42 46 48 50 51 52 0 9 16 21 25 28 31 32 34 35
3 0 20 34 44 50 53 56 58 59 60 0 16 27 35 41 45 48 50 51 52 0 8 15 20 24 27 30 32 34 35
2.5 0 18 32 41 48 52 55 57 59 60 0 14 25 33 39 44 47 49 51 52 0 7 13 19 23 26 29 32 34 35
2 0 16 29 38 46 51 54 57 58 60 0 12 22 31 37 42 46 49 51 52 0 6 12 17 21 25 28 31 33 35
1.5 0 13 25 35 42 48 53 56 58 59 0 10 19 27 34 40 44 47 50 52 0 5 10 15 19 23 26 29 32 34
1 0 11 21 30 37 44 49 53 57 59 0 8 16 23 30 35 41 45 48 51 0 4 8 12 16 20 24 27 30 33

paa 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 0 .1 .2 .3 .4 .5 .6 .7 .8 .9
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Supplementary Table 12: Household secondary attack rate (SAR) under UK-like assortative contact
patterns. The SAR is reported, expressed in %, for various values of R0, φ, ψ and paa, and is accompanied
by the expected size χv of a household infected during the stable exponential growth window. Note how
the average size of an infected household can be significantly larger than the average size of a randomly
selected one or even of the household of a randomly selected individual.

ψ R0 = 1.5 – φ = 1 χv R0 = 2 – φ = 1 χv R0 = 4 – φ = 1 χv

4 0 11 24 37 50 61 71 80 88 93 3.82 0 11 24 37 50 61 71 80 88 94 3.84 0 11 24 37 50 61 71 80 88 94 3.87
3.5 0 10 22 35 47 59 70 79 87 93 3.78 0 10 22 35 48 59 70 79 87 93 3.79 0 10 22 35 48 59 70 79 88 94 3.83
3 0 9 20 32 45 57 68 78 86 92 3.72 0 9 20 33 45 57 68 78 86 92 3.74 0 9 20 33 45 57 68 78 87 93 3.77
2.5 0 9 19 30 42 54 66 76 85 91 3.65 0 9 19 30 42 54 66 76 85 92 3.66 0 9 19 30 42 54 66 77 86 92 3.69
2 0 8 17 27 38 50 62 74 83 90 3.55 0 8 17 27 38 50 62 74 84 90 3.56 0 8 17 27 38 50 62 74 84 91 3.59
1.5 0 7 15 24 34 45 57 69 81 89 3.42 0 7 15 24 34 45 57 70 81 89 3.43 0 7 15 24 34 45 57 70 81 89 3.44
1 0 6 13 21 30 39 51 63 75 85 3.23 0 6 13 21 30 39 51 63 75 85 3.23 0 6 13 21 29 39 51 63 75 85 3.23

R0 = 1.5 – φ = 1.5 χv R0 = 2 – φ = 1.5 χv R0 = 4 – φ = 1.5 χv

4 0 16 33 48 61 71 79 86 92 95 3.86 0 16 33 48 61 71 80 87 92 95 3.87 0 16 33 48 61 72 80 87 92 96 3.90
3.5 0 15 31 46 59 70 79 86 91 95 3.82 0 15 31 46 59 70 79 86 91 95 3.83 0 15 31 46 59 70 79 86 92 95 3.86
3 0 13 28 43 56 68 77 85 90 94 3.77 0 13 28 43 56 68 77 85 91 94 3.78 0 13 28 43 57 68 78 85 91 95 3.81
2.5 0 12 25 39 53 65 75 83 89 93 3.71 0 12 25 39 53 65 75 84 90 93 3.72 0 12 25 40 53 65 76 84 90 94 3.75
2 0 10 22 35 48 61 72 81 88 92 3.62 0 10 22 35 48 61 72 81 88 92 3.63 0 10 22 35 49 61 73 82 88 93 3.66
1.5 0 9 19 30 42 55 67 77 85 90 3.49 0 9 19 30 43 55 67 77 85 91 3.50 0 9 19 30 43 55 67 78 86 91 3.52
1 0 7 15 25 35 46 58 70 80 88 3.31 0 7 16 25 35 46 58 70 80 88 3.31 0 7 16 25 35 46 58 70 80 88 3.32

R0 = 1.5 – φ = 2 χv R0 = 2 – φ = 2 χv R0 = 4 – φ = 2 χv

4 0 21 40 56 68 77 84 90 94 96 3.89 0 21 40 56 68 78 85 90 94 96 3.90 0 21 41 57 69 78 85 90 94 96 3.92
3.5 0 19 38 54 67 76 84 89 93 95 3.85 0 19 38 54 67 76 84 89 93 95 3.86 0 19 38 54 67 77 84 90 94 96 3.88
3 0 17 35 51 64 75 82 88 92 95 3.80 0 17 35 51 64 75 83 88 93 95 3.81 0 17 35 51 65 75 83 89 93 95 3.84
2.5 0 15 32 47 61 72 81 87 91 94 3.74 0 15 32 48 61 72 81 87 91 94 3.75 0 15 32 48 62 73 81 87 92 94 3.78
2 0 13 28 43 56 68 78 85 90 93 3.66 0 13 28 43 57 68 78 85 90 93 3.67 0 13 28 43 57 69 78 85 90 93 3.69
1.5 0 11 23 37 50 62 73 81 87 91 3.54 0 11 23 37 50 62 73 81 88 91 3.55 0 11 23 37 50 63 73 82 88 92 3.57
1 0 9 18 29 41 53 64 74 83 89 3.36 0 9 18 29 41 53 64 74 83 89 3.37 0 9 18 29 41 53 64 75 83 89 3.37

paa 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 0 .1 .2 .3 .4 .5 .6 .7 .8 .9

Supplementary Table 13: Fraction of within-household transmission under UK-like contact patterns.
The average fraction Fh of total transmission that occurs in households, expressed as %, is reported for
various values of R0, φ, ψ and paa.

ψ R0 = 1.5 – φ = 1 R0 = 2 – φ = 1 R0 = 4 – φ = 1

4 0 16 28 37 43 47 50 52 54 55 0 12 22 29 35 39 42 44 46 48 0 6 12 16 20 23 25 27 29 31
3.5 0 14 26 35 42 47 50 52 54 56 0 11 20 28 34 38 42 44 46 48 0 6 11 15 19 22 25 27 29 31
3 0 13 24 33 40 46 49 52 54 56 0 10 19 26 32 37 41 44 46 48 0 5 10 14 18 21 24 27 29 31
2.5 0 12 22 31 38 44 49 52 55 57 0 9 17 24 31 36 40 44 47 49 0 5 9 13 17 20 24 27 29 31
2 0 10 20 28 36 42 48 52 55 57 0 8 15 22 28 34 39 43 47 49 0 4 8 12 15 19 23 26 29 32
1.5 0 9 17 25 33 40 46 51 55 58 0 7 13 20 26 32 37 42 46 50 0 3 7 10 14 18 21 25 28 32
1 0 7 14 22 28 35 41 47 53 57 0 6 11 17 22 28 33 39 44 49 0 3 6 9 12 15 19 22 26 31

R0 = 1.5 – φ = 1.5 R0 = 2 – φ = 1.5 R0 = 4 – φ = 1.5

4 0 21 34 42 46 49 51 52 53 53 0 16 27 34 38 41 43 44 45 46 0 8 15 19 22 25 26 28 28 29
3.5 0 19 32 40 45 49 51 52 53 53 0 15 25 32 37 40 43 44 45 46 0 8 14 18 22 24 26 28 29 30
3 0 17 30 39 44 48 50 52 53 54 0 13 23 31 36 40 42 44 46 46 0 7 12 17 21 24 26 27 29 30
2.5 0 15 27 36 43 47 50 52 54 55 0 12 21 29 35 39 42 44 46 47 0 6 11 16 20 23 25 27 29 30
2 0 13 24 33 41 46 50 52 54 55 0 10 19 26 33 37 41 44 46 48 0 5 10 14 18 22 24 27 29 31
1.5 0 11 21 30 37 44 48 52 55 57 0 8 16 23 30 35 40 44 47 49 0 4 8 12 16 20 23 26 29 31
1 0 9 17 25 33 40 46 51 55 58 0 7 13 20 26 32 37 42 46 50 0 3 7 10 14 18 21 25 28 32

R0 = 1.5 – φ = 2 R0 = 2 – φ = 2 R0 = 4 – φ = 2

4 0 25 38 44 47 49 50 51 52 52 0 19 30 36 40 41 43 44 44 45 0 10 17 21 24 25 27 27 28 28
3.5 0 23 36 43 47 49 50 51 52 52 0 18 29 35 39 41 43 44 44 45 0 9 16 20 23 25 27 27 28 29
3 0 21 34 42 46 49 51 52 52 53 0 16 27 34 38 41 43 44 45 45 0 8 15 19 22 25 26 28 28 29
2.5 0 18 31 40 45 48 51 52 53 53 0 14 25 32 37 40 43 44 45 46 0 7 13 18 21 24 26 28 29 29
2 0 16 28 37 43 48 50 52 53 54 0 12 22 30 35 39 42 44 46 47 0 6 12 16 20 23 25 27 29 30
1.5 0 13 24 33 41 46 50 52 54 55 0 10 19 26 33 37 41 44 46 48 0 5 10 14 18 22 24 27 29 31
1 0 10 20 28 36 42 48 52 55 57 0 8 15 22 28 34 39 43 47 49 0 4 8 12 15 19 23 26 29 32

paa 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 0 .1 .2 .3 .4 .5 .6 .7 .8 .9
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4 Supplementary Figures

Supplementary Figure 1: Relationship between contact rates as elements of the NGM. If T is chosen as
the time of recovery, the fraction ζ of all contacts during the entire infectious period that are infectious
contacts (see Supplementary Methods, Section 1.1.5) is given by the ratio of the area under the red curve
and the area of the rectangle of height c and width T . If the recovery time is arbitrarily chosen to be
T ′ instead, with T ′ = 2T say, then ζ is halved, so that the choice of whether in some time intervals
individuals are considered infectious but with zero infectivity or already recovered bears no influence on
the relationship between contact rates and elements of the NGM.

Supplementary Figure 2: Relationship between different parameterisations of within-household transmis-
sion. Model AH can be parameterised in terms of the within-household infectivity βh or in terms of
the within-household infectious-adult-to-susceptible-adult transmission probability paa. The dash-dotted
lines refer to the values of pn = 1− exp(−βh/(n− 1)), for n = 2, 3, . . . , 8 (from top to bottom), and the

continuous line is the average taken over the distribution
{
h̃n

}
. Note the monotonic (and thus invertible)

relationship.
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Supplementary Figure 3: Mapping assortativity from model AH to model A. A visual exploration provides
insight into the conditions under which the mapping procedure estimating the assortativity parameter
θA for model A from the age-stratified incidence vector vAH fails. The figure shows the fractions of
adults (blue) and children (red) in the incidence predicted by model AH, i.e. the components of vAH

(dashed horizontal lines) and those predicted by model A, i.e. the components of vA (continuous lines) as
a function of the assortativity θA, for different values of ψ. The mapping procedure attempts to compute
the assortativity θA as the point at which the continuous and dashed lines intersect, if any. Parameters
used in this example are R0 = 2, φ = 1, paa = 0.5 and baseline random mixing: γ (= γh = γg) = 1
and θg = 0.2273). Note how a valid assortativity θA can be found for very low values of ψ but then, for
increasing ψ, the mapping first returns a negative (i.e. unacceptable) value of θA (e.g. for ψ = 0.8), then
no value at all (e.g. for ψ = 0.99 or ψ = 1) and then again a valid solution for ψ > 1.
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Supplementary Figure 4: Early epidemic indicators for model AH with random mixing. A) Fraction of
incidence consisting of children (i.e. component vc of vAH); B) fraction of incidence of new household
primary cases consisting of children (i.e. component vch of vAH

h – note how it depends only on ψ when
random mixing is assumed); C) SAR; and D) fraction Fh of total transmission that occurs in household.
All indicators are expressed in % and are plotted as functions of paa and ψ for various values of R0 and
φ, for the population of Great Britain and assuming random mixing: γ (= γh = γg) = 1, θg = 0.2273.
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Supplementary Figure 5: Model comparison in terms of final size and peak incidence with random mixing. Average epidemic final size (top)
and peak daily incidence (bottom), measured in % of population, as predicted by models AH, A and H, and comparison by simplest model
acceptance regions plot, for R0 = 1.5 (left: a-d, m-p), R0 = 2 (middle: e-h, q-t) and R0 = 4 (right: i-l, u-x), as a function of paa and ψ, for the
population of Great Britain. Contact patterns assume random mixing: γ = 1, θg = 0.2273. Other parameters: φ = 1 and ε = 5%.
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Supplementary Figure 6: Model comparison in terms of time to the peak and age-stratified final size with random mixing. Average time to
peak daily incidence (top), measured in mean number of generations, as predicted by models AH, A and H, and comparison by simplest model
acceptance regions plot, and average final size among adults and children (bottom), measured in % of population, as predicted by models AH
and A, for R0 = 1.5 (left: a-d, m-p), R0 = 2 (middle: e-h, q-t) and R0 = 4 (right: i-l, u-x), as a function of paa and ψ, for the population of
Great Britain. Contact patterns assume random mixing: γ = 1, θg = 0.2273. Other parameters: φ = 1 and ε = 5%.
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Supplementary Figure 7: Simplest model acceptance regions, based on each output separately and all three together, with random mixing. The
simplest model that accurately captures each output or all three simultaneously (intersection) is identified over the (paa, ψ)-space for R0 = 1.5
(left: a-d, m-p), R0 = 2 (middle: e-h, q-t) and R0 = 4 (right: i-l, u-x) and for φ = 1 (top: a-l) and φ = 2 (bottom: m-x), for the population of
Great Britain. Contact patterns assume random mixing: γ = 1, θg = 0.2273. Other parameters: ε = 5%.
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Supplementary Figure 8: Simplest model acceptance regions, based on each output separately and all three together, with random mixing. The
simplest model that accurately captures each output or all three simultaneously (intersection) is identified over the (paa, ψ)-space for R0 = 1.5
(left: a-d, m-p), R0 = 2 (middle: e-h, q-t) and R0 = 4 (right: i-l, u-x) and for ε = 1% (top: a-l) and ε = 10% (bottom: m-x), for the population
of Great Britain. Contact patterns assume random mixing: γ = 1, θg = 0.2273. Other parameters: φ = 1.
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Supplementary Figure 9: Sensitivity analysis on overall simplest model acceptance regions with random mixing. Overall simplest model
acceptance regions and superimposed SAR contour levels are plotted for various values of R0 and φ, with rejection thresholds ε = 1% (A),
ε = 5% (B; same regions as in Figure 3A of main text) and ε = 10% (C), for the population of Great Britain. Contact patterns assume random
mixing: γ = 1, θg = 0.2273.
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Supplementary Figure 10: Mapped assortativity of model A with random mixing and UK-like contact patterns. Global assortativity θA

estimated for model A from the model mapping procedure, with random mixing (A: γ = 1, θg = 0.2273) and UK-like contact patterns including
assortative mixing (B: γ = 0.75, θg = 0.58) as a function of paa and ψ for various values of R0 and φ, for the population of Great Britain.
The dashed line (also along the y-axis) shows where the assortativity has not changed when households are removed (θA = θg). Note the
limited impact of R0 and φ, and the fact that the presence of households introduces an apparent assortative mixing that is generally higher
than random but lower than what measured in UK-like contact patterns. Only the region for ψ > 1 is plotted, as no value of θA can be found
for ψ = 1 when random mixing is assumed (see Supplementary Methods, Section 1.3, and Supplementary Discussion, Section 2.3.3).
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Supplementary Figure 11: Early epidemic indicators for model AH with UK-like contact patterns. A)
Fraction of incidence consisting of children (i.e. component vc of vAH); B) fraction of incidence of new
household primary cases consisting of children (i.e. component vch of vAH

h ); C) SAR; and D) fraction Fh of
total transmission that occurs in household. All indicators are expressed in % and are plotted as functions
of paa and ψ for various values of R0 and φ, for the population of Great Britain and assuming UK-like
contact patterns: γ = 0.75, θg = 0.58.
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Supplementary Figure 12: Model comparison in terms of final size and peak incidence with UK-like contact patterns. Average epidemic final
size (top) and peak daily incidence (bottom), measured in % of population, as predicted by models AH, A and H, and comparison by simplest
model acceptance regions plot, for R0 = 1.5 (left: a-d, m-p), R0 = 2 (middle: e-h, q-t) and R0 = 4 (right: i-l, u-x), as a function of paa and ψ,
for the population of Great Britain. UK-like contact patterns are assumed: γ = 0.75, θg = 0.58. Other parameters: φ = 1 and ε = 5%.
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Supplementary Figure 13: Model comparison in terms of time to the peak and age-stratified final size with UK-like contact patterns. Average
time to peak daily incidence (top), measured in mean number of generations, as predicted by models AH, A and H, and comparison by simplest
model acceptance regions plot, and average final size among adults and children (bottom), measured in % of population, as predicted by models
AH and A, for R0 = 1.5 (left: a-d, m-p), R0 = 2 (middle: e-h, q-t) and R0 = 4 (right: i-l, u-x), as a function of paa and ψ, for the population
of Great Britain. UK-like contact patterns are assumed: γ = 0.75, θg = 0.58. Other parameters: φ = 1 and ε = 5%.
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Supplementary Figure 14: Simplest model acceptance regions, based on each output separately and all three together, with UK-like contact
patterns. The simplest model that accurately captures each output or all three simultaneously (intersection) is identified over the (paa, ψ)-space
for R0 = 1.5 (left: a-d, m-p), R0 = 2 (middle: e-h, q-t) and R0 = 4 (right: i-l, u-x) and for φ = 1 (top: a-l) and φ = 2 (bottom: m-x), for the
population of Great Britain. UK-like contact patterns are assumed: γ = 0.75, θg = 0.58. Other parameters: ε = 5%.
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Supplementary Figure 15: Simplest model acceptance regions, based on each output separately and all three together, with UK-like contact
patterns. The simplest model that accurately captures each output or all three simultaneously (intersection) is identified over the (paa, ψ)-space
for R0 = 1.5 (left: a-d, m-p), R0 = 2 (middle: e-h, q-t) and R0 = 4 (right: i-l, u-x) and for ε = 1% (top: a-l) and ε = 10% (bottom: m-x), for
the population of Great Britain. UK-like contact patterns are assumed: γ = 0.75, θg = 0.58. Other parameters: φ = 1.
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Supplementary Figure 16: Sensitivity analysis on overall simplest model acceptance regions with UK-like contact patterns. Overall simplest
model acceptance regions and superimposed SAR contour levels are plotted for various values of R0 and φ, with rejection thresholds ε = 1%
(A), ε = 5% (B; same regions as in Figure 3B of main text) and ε = 10% (C), for the population of Great Britain. UK-like contact patterns
are assumed: γ = 0.75, θg = 0.58.
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Supplementary Figure 17: Sensitivity analysis on overall simplest model acceptance regions with inter-
mediate contact patterns. Overall simplest model acceptance regions and superimposed SAR contour
levels are plotted for various values of R0 and φ, with a rejection threshold ε = 5% and contact patterns
intermediate between random (γ = 1, θg = 0.2273) and UK-like (γ = 0.75, θg = 0.58). Top: θg = 0.4 (A:
γ = 1; B: γ = 0.75). Bottom: θg = 0.5 (C: γ = 1; D: γ = 0.75).
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Supplementary Figure 18: Model mapping at constant real-time growth rate r. Overall simplest model acceptance regions are plotted after
the model mapping procedure is performed by matching the same r across all models, for various values of r (0.14552, 0.25282 and 0.52588,
respectively corresponding to R0 = 1.5, 2 and 4 at paa = 0) and φ, for random mixing (top row: A-C) and UK-like contact patterns (bottom
row: D-F), and ε = 1% (left: A and D), ε = 5% (middle: B and E) and ε = 10% (right: C and F).
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Supplementary Figure 19: Model mapping when children can also be less susceptible/infectious than adults. Overall simplest model acceptance
regions are plotted for parameter values including φ < 1 and/or ψ < 1, for random mixing (top: A-C) and UK-like contact patterns (bottom:
D-F), and ε = 1% (left: A and D), ε = 5% (middle: B and E) and ε = 10% (right: C and F). Note that the y-axis is expressed in log2 ψ and
that φ takes values 1/2, 1 and 2. Note the broad lighter-shaded regions where no valid assortativity for model A can be found.
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Supplementary Figure 20: Mapped assortativity of model A for Sierra Leone, with random mixing and UK-like contact patterns. Global
assortativity θA estimated for model A from the model mapping procedure, with random mixing (A: γ = 1, θg = 0.5381) and UK-like contact
patterns including assortative mixing (B:, γ = 0.75, θg = 0.58) as a function of paa and ψ for various values of R0 and φ, for the population of
Sierra Leone. The dashed line (also along the y-axis) shows where the assortativity has not changed when households are removed (θA = θg). In
the white region, no value of θA can be found to match the same age-stratified incidence as model AH (see Supplementary Discussion, Section
2.3.3). For the same reason, only the region ψ > 1 is plotted, as no value of θA can be found for ψ = 1 when random mixing is assumed (see
Supplementary Methods, Section 1.3, and Supplementary Discussion, Section 2.3.3). The color scale is consistent with that of Supplementary
Figure 10 to facilitate comparison (though note the reduced range of paa).
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Supplementary Figure 21: Sensitivity analysis on overall simplest model acceptance regions for Sierra Leone. Overall simplest model acceptance
regions and superimposed SAR contour levels are plotted with random mixing (A: γ = 1, θg = 0.5381) and UK-like contact patterns (B: γ = 0.75,
θg = 0.58), for various values of R0 and φ, a rejection threshold ε = 5%, and the population of Sierra Leone.
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Supplementary Figure 22: Mapped assortativity of model A for South Africa, with random mixing and UK-like contact patterns. Global
assortativity θA estimated for model A from the model mapping procedure, with random mixing (A: γ = 1, θg = 0.4592) and UK-like contact
patterns including assortative mixing (B:, γ = 0.75, θg = 0.58) as a function of paa and ψ for various values of R0 and φ, for the population of
South Africa. The dashed line (also along the y-axis) shows where the assortativity has not changed when households are removed (θA = θg). In
the white region, no value of θA can be found to match the same age-stratified incidence as model AH (see Supplementary Discussion, Section
2.3.3). For the same reason, only the region ψ > 1 is plotted, as no value of θA can be found for ψ = 1 when random mixing is assumed (see
Supplementary Methods, Section 1.3, and Supplementary Discussion, Section 2.3.3). The color scale is consistent with that of Supplementary
Figure 10 to facilitate comparison (though note the reduced range of paa).
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Supplementary Figure 23: Sensitivity analysis on overall simplest model acceptance regions for South Africa. Overall simplest model acceptance
regions and superimposed SAR contour levels are plotted with random mixing (A: γ = 1, θg = 0.4592) and UK-like contact patterns (B: γ = 0.75,
θg = 0.58), for various values of R0 and φ, a rejection threshold ε = 5%, and the population of South Africa.
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Supplementary Figure 24: Assessment of range of validity of linear fit for the rule of thumb. The table assesses the quality of fit of linear
regression models through SAR data over multiple possible intervals of R0 values from 1.1 to 4, to inform the formulation of the rule of thumb,
for random mixing (A) and UK-like contact patterns (B), for the population of Great Britain and an accuracy threshold of 5%. Each sub-table
refers to a different value of φ (each row) and range of values of ψ (each column). In each sub-table, the values of R0 along the left-most
column and the values of R0 on the top row indicate, respectively, the start and end (inclusive) of the range of values of R0 through which the
linear regression is performed. At minimum, 3 consecutive values of R0 are used. The coefficients for each fit are shown in each table cell (top:
regression coefficient; bottom: intercept), and the adjusted R2 value is shown by the cell colour.
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Supplementary Figure 25: Empirical rule of thumb for when the household structure is needed for accurate predictions. Each plot specifies
the level of SAR above which a household structure is necessary for output prediction within a ε = 1% (A), ε = 5% (B) and ε = 10% (C)
relative accuracy for Great Britain (left; fraction of children = 22.73%, mean household size = 2.35), South Africa (middle; fraction of children
= 45.92%, mean household size = 4.27) and Sierra Leone (right; fraction of children = 53.81%, mean household size = 5.85), for random mixing
and UK-like contact patterns (see Supplementary Discussion, Section 2.4 for details). In (D) the coefficients of the rule of thumb (regression
coefficient β1 and intercept β0) are plotted against each other, for different populations and accuracy thresholds.
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